
15-884: Machine Learning Systems

Automating ML Compilation

Instructor: Tianqi Chen

ML Compilation

ML
Models

Direct code generation

ML Compiler

ML Compilation

ML
Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Big Space of Possible Transformations

Hardware

Loop
Transformations

Thread
Bindings

Cache
Locality

Thread
Cooperation Tensorization Latency

Hiding …

C = tvm.compute((m, n),
lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Specification

Huge space of
possible choices

Elements of an Automated ML Compiler

• Program representation

• Comprehensive structural search space

• Effective search

Program Representation

Low-level Loop Representation

for i, j in grid(16, 16):

Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional
buffer

Array
computation

Loop nests

Represent Program via Transformations

parallel for xo in range(32):

C[xo*4:xo*4+4] = f32x4.add(

A[xo*4:xo*4+4], B[xo*4:xo*4+4])

Initial Program + TransformationsLoop Nest Representation

xo, xi = split(x, 4)

parallelize(xo)

vectorize(xi)

for x in range(128):

C[x] = A[x] + B[x]

Equivalent to each other

Integer Set, Iterator Space and Relations

for i, j in grid(16, 16):

S0: Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

S1: Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

S2: Z[i, j] = Y[i, j] + b[j]

S0: i in [0, 16), j in [0, 16)

S1: i in [0, 16), j in [0, 16), k in [0,16)

S2: i in [0, 16), j in [0, 16)

Integers of iterations

S0[i, j] < S1[i, j, k] < S2[i, j]

Partial order constraints of executions

Discussion

• What are other possible ways to represent the same program?

• How would these representation variants affect automatic
optimizations?

Search Space Construction

Auto Tuning Program Templates

for xo, yo, k in grid(sxo?, syo?, 128):

for xi, yi in grid(sxi?, syi?):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

Access indices are omitted to simplify the example

Tunable parameters

Constraints

sxo? * sxi? == 128

syo? * syi? == 128

Structural Variants vs Parameter Variants

for xo, yo, k in grid(sxo?, syo?, 128):

for xi, yi in grid(sxi?, syi?):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

Access indices are omitted to simplify the example

Code structure variant 0

for xo, yo, k in grid(sxo?, syo?, 128):

for xi, yi in grid(sxi?, syi?):

C[…] += A[…] * B[…]

for xi, yi in grid(sxi?, syi?):

D[…] = max(C[…], 0)

Code structure variant 1

Parameter variants

Structural variants

Discussion

• What can be tunable parameters in a program template?

• How to represent structure variants?

Use the Transformation Representation

xo, xi = split(x, sxi?)

reorder(xo, yo, k, xi, yi)

for x, y, k in grid(128, 128, 128):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

yo, yi = split(y, syi?)

compute_at(D, Dloc?)

Computation location of D

for xo, yo, k in grid(sxo?, syo?, 128):

for xi, yi in grid(sxi?, syi?):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

when Dloc? == root

Corresponding Program SpaceInit Program + Transformations

for xo, yo, k in grid(sxo?, syo?, 128):

for xi, yi in grid(sxi?, syi?):

C[…] += A[…] * B[…]

for x, y in grid(sxi?, syi?):

D[…] = max(C[…], 0)

when Dloc? == k

Programmatic Search Space Generation by Program Analysis

for x, y, k in grid(128, 128, 128):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

Reduction with reuse opportunities
try to tile the spatial dimensions

Element-wise operations, consider
fuse to previous loop

xo, xi = split(x, sxi?)

reorder(xo, yo, k, xi, yi)

yo, yi = split(y, syi?)

compute_at(D, Dloc?)

Search space represented
by transformations

Effective Search

Search via Learned Cost Model
One configuration instance in
the search space

Search Space Search
Planner

Code Generator

Training data
ML Cost Model

learning

Invariant Cost Model

Search Space
Search
Planner

Code Generator

Shared ML Cost Model

Code GeneratorSearch Space
Search
Planner

New Tasks

Reuse data from historical tasks

Search Over Parameters

Search
Planner

for xo, yo, k in grid(sxo?, syo?, 128):

for xi, yi in grid(sxi?, syi?):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

for xo, yo, k in grid(32, 32, 128):

for xi, yi in grid(4, 4):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] = max(C[…], 0)

sxi? = 4, syi? = 4

Search Over Transformations

xo, xi = split(x, 4)

reorder(xo, yo, k, xi, yi)

for x, y, k in grid(128, 128, 128):

C[…] += A[…] * B[…]

for x, y in grid(128, 128):

D[…] += max(C[…], 0)

yo, yi = split(y, 4)

compute_at(D, k)

Search Planner
Evolutionary search
over transformations

Revisit: Direct Representation vs Transformations

parallel for xo in range(32):

C[xo*4:xo*4+4] = f32x4.add(

A[xo*4:xo*4+4], B[xo*4:xo*4+4])

Initial Program + TransformationsDirect Representation

xo, xi = split(x, 4)

parallelize(xo)

vectorize(xi)

for x in range(128):

C[x] = A[x] + B[x]

Discussions

• What are other possible ways to perform search on the direct and
transformation-based representation?

• How to handle specialized hardware (GPU and NPUs)

Search and Then Validate

xo, xi = split(x, 4)

reorder(xo, yo, k, xi, yi)

yo, yi = split(y, 4)

compute_at(D, xi)

Search Planner Validator

Feedback

Possibly incorrect
transformations

Summary: Elements of an Automated ML Compiler

• Program representation
• Represent the program/optimization of interest, (e.g. dense tensor linear

algebra, data structures)

• Comprehensive structural search space
• Cover common optimizations
• Find ways for domain experts to provide input

• Effective search
• Cost models, transferability
• Exploration vs exploitation Still an open research area!

Logistics

Informal mid-term check-in (required)
• Come to one of the office hours to talk about your current progress

in the project

• Alternative: send a short email note about your current progress

