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A Typical Deep Learning System Stack




Recap: Parallel Scheduling Engine

The Tagged Data Pack Reference to Related

Things into Execution
Function (via Closure)

Push the Operation
to Engine

B.data
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Recap: Example Scheduling
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engine.push(lambda: A.data=2,
read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+l,
read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data,
read=[A.var, B.var], mutate=[D.var])



Data Parallelism

key-value store b
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How to do Synchronization over Network

This Lecture
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Distributed Gradient Aggregation, Local Update

Many replicas of the same
graph run in parallel

fullc-backward gl Networks }
[ 1 .
: G1 =sum(gl over replicas)

wl -= 1r * G1

fullc-forward
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log-loss



Allreduce: Collective Reduction

Interface result = allreduce(float buffer[size])

Running Example

Machine 1 Machine 2
comm = communicator.create() comm = communicator.create()
a =[1, 2, 3] a =[1, 0, 1]
b = comm,allpeduce(a, op:sum) b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4] assert b == [2, 2, 4]



Use Allreduce for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
g = net.run(grad, in=data)
:j> gsum = comm.allreduce(g, op=sum)

W -= 1lr * gsum / num_workers



Common Connection Topologies

All-to-all: Ring (NVLink) Tree-Shape
(plugged to same switch)




Discussion

e How to Implement Allreduce over Network

e What is impact of network topology on this



Tree Shape Reduction

e Logically form a reduction tree between
nodes

o Aggregate to root then broadcast




Tree Shape Reduction




Tree Shape Reduction




Tree Shape Reduction

Question: What is Time

/\ Complexity of Tree Shape
Reduction




Ring based Reduction

e Form alogical ring between nodes

e Streaming aggregation
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Ring based Reduction
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Ring based Reduction
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Ring based Reduction




Ring based Reduction
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Ring based Reduction
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Each node have correctly reduced result of one segment!
This is called reduce scatter



Ring based Reduction: Allgather phase
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Ring based Reduction: Allgather phase
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Ring based Reduction: Allgather phase
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Ring based Reduction: Allgather phase
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Question: What is Time
Complexity of Ring based
Reduction



Allreduce Libraries

e MPI offers efficient CPU allreduce
e dmlc/rabit: fault tolerant variant

e Horovod.ai

e NCCL: Nvidia’ efficient multiGPU collective



GPUDirect and RMDA

Server 1 Server 2

Source: nvidia



NCCL: Nvidia’s Efficient Multi-GPU Collective

e Uses unified GPU direct memory accessing

e Each GPU launch a working kernel, cooperate with each other to do
ring-based reduction

e Asingle C++ kernel implements intra GPU synchronization and
Reduction



Discussion

e What are pros and cons of Allreduce primitives

e How to integrate allreduce with a task scheduler



Schedule Allreduce Asynchronously

Make use of mutation semantics!

A= 9 Ei> engine.push(
lambda: A.data=2,

read=[], mutate= [A.var])

engine.push(
B = comm.allreduce(A) [:>> lambda: B.data=allreduce(A.data),
read=[A.var], mutate=[B.var, comm.var])

engine.push(
Ei> lambda: D.data=A.data * B.data,

read=[A.var, B.var], mutate=[D.var])

D=A%*B



Distributed Gradient Aggregation, Remote Update

Many replicas of the same
graph run in parallel

fullc-backward
o

softmax-backward

softmax-forward

log-loss

Parameter Server J

wl

wl -= 1r * sum(gl over replicas)

Update result on remote server
and send updated results back




Parameter Server Abstraction

Interface

ps.push(index, gradient)

ps.pull(index)

key-value store b
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PS Interface for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
g = net.run(grad, in=data)

m) ps.push(weight_index, g)
w = ps.pull(weight index)



PS Data Consistency: BSP

e “Synchronized”

o Gradient aggregated over all works .
pull weight

o All workers receives the same parameters

o Give same result as single batch update
push gradient

e O
® o o

update weight

o Brings challenges to synchronization



PS Consistency: Asynchronous

t=0%0 e N

pull weight pull weight
push gradient (delay = 0) pull weight

e e e o

push gradient (delay = 1) push gradient



The Cost of PS Model: All to All Pattern

e Each worker talks to all servers

e Shard the parameters over different
servers

e What is the time complexity of
communication?




Discussion

e What are pros and cons of parameter server

e How can we handle fault tolerance/straggler in both
allreduce or PS



Integrate Schedule with Networking using Events

Asynchronous function that takes a
callback from engine

_________________________________________________________________

A.data Elambda cb: ps.receive(A.data) E

\ ___________________________________________________________ |

[ Receive Function } > [ Engine }

def event.on data received():
# notify engine receive Use the callback to notify engine

complete that data receive is finished
cb();




Model Parallel Training

e Map parts of workload to different devices

e Require special dependency patterns
(wave style)
o e.g. LSTM




Question: How to Write Model Parallel Program?

for 1 in range(num_layers):
for t in range(num_time stamp):
out, state = layer[i].forward(data[i][t], state)
data[i+1][t] = out.copyto(device[i])

Scheduler tracks these dependencies
we only talked about single host case



Breaking up the Computation for Model Parallelism

WorkerQ 5 Workerl

A

Data




Breaking up the Computation for Model Parallelism

WorkerQ i Workerl

A

Data

Partition the graph, put send/recv pairs in the boundary



Discussion

e How to represent pipeline model parallelism

e How can we handle fault tolerance/straggler issues



Summary: What’s Special about Communication

Requirements
e Track dependency correctly
e Resolve resource contention and allocation
e Some special requirement on channel
o Allreduce: ordered call

Most of them are simplified by a scheduler



