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Distributed Training and 
Communication Primitives

Instructor: Tianqi Chen



A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends



Recap: Parallel Scheduling Engine

Execution Function (box)

A.data

B.data

v2

v1

lambda: B.data=A.data+1

The Tagged Data Pack Reference to Related 
Things into Execution 
Function (via Closure)

engine.push( Exec Function ,                   
read = [ ],

mutate= [ ])

Push the Operation 
to Engine

v1

A.data B.data

v2



Recap: Example Scheduling

engine.push(lambda: A.data=2, 
read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1, 
read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data, 
read=[A.var, B.var], mutate=[D.var])

A = 2

B = A + 1

D = A * B



Data Parallelism

● Train replicated version of model in 
each machine

● Synchronize the gradient



How to do Synchronization over Network

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1 
update w1

fullc-forward

fullc-forward

softmax-forward

log-loss

w1

w2

data

label

sync g2
update w2

This Lecture



Distributed Gradient Aggregation, Local Update

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

Networksg1

Many replicas of the same 
graph run in parallel

G1 = sum(g1 over replicas)

w1 -= lr * G1



Allreduce: Collective Reduction

result = allreduce(float buffer[size])Interface

a = [1, 2, 3]    

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]    

Machine 1 Machine 2

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()



Use Allreduce for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
g = net.run(grad, in=data)
gsum = comm.allreduce(g, op=sum)

w -= lr * gsum / num_workers



Common Connection Topologies

All-to-all: 
(plugged to same switch)

Ring (NVLink) Tree-Shape



Discussion

● How to Implement Allreduce over Network

● What is impact of network topology on this



Tree Shape Reduction

2

3 1

1

2

● Logically form a reduction tree between 
nodes

● Aggregate to root then broadcast



Tree Shape Reduction
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Tree Shape Reduction
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Tree Shape Reduction

2

3 1

1

2

99

9 9

Question: What is Time 
Complexity of Tree Shape 
Reduction



Ring based Reduction

● Form a logical ring between nodes

● Streaming aggregation



Ring based Reduction



Ring based Reduction



Ring based Reduction



Ring based Reduction



Ring based Reduction

Each node have correctly reduced result of one segment!
This is called reduce_scatter



Ring based Reduction: Allgather phase



Ring based Reduction: Allgather phase



Ring based Reduction: Allgather phase



Ring based Reduction: Allgather phase

Question: What is Time 
Complexity of Ring based 
Reduction



Allreduce Libraries

● MPI offers efficient CPU allreduce

● dmlc/rabit: fault tolerant variant

● Horovod.ai

● NCCL: Nvidia’ efficient multiGPU collective



GPUDirect and RMDA

Source: nvidia



NCCL: Nvidia’s Efficient Multi-GPU Collective

● Uses unified GPU direct memory accessing

● Each GPU launch a working kernel, cooperate with each other to do 
ring-based reduction

● A single C++ kernel implements intra GPU synchronization and 
Reduction



Discussion

● What are pros and cons of Allreduce primitives

● How to integrate allreduce with a task scheduler



Schedule Allreduce Asynchronously
Make use of mutation semantics!

engine.push(
lambda: A.data=2, 
read=[], mutate= [A.var])

engine.push(
lambda: B.data=allreduce(A.data), 
read=[A.var], mutate=[B.var, comm.var])

engine.push(
lambda: D.data=A.data * B.data, 
read=[A.var, B.var], mutate=[D.var])

A = 2

B = comm.allreduce(A)

D = A * B



Distributed Gradient Aggregation, Remote Update

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

g1

Many replicas of the same 
graph run in parallel

w1 -= lr * sum(g1 over replicas)

Parameter Server

w1

Update result on remote server 
and send updated results back



Parameter Server Abstraction

ps.push(index, gradient)

Interface

ps.pull(index)



PS Interface for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
g = net.run(grad, in=data)

ps.push(weight_index, g)
w = ps.pull(weight_index)



PS Data Consistency: BSP

pull weight

push gradient 

update weight 

● “Synchronized”

○ Gradient aggregated over all works

○ All workers receives the same parameters

○ Give same result as single batch update

○ Brings challenges to synchronization



PS Consistency: Asynchronous



The Cost of PS Model: All to All Pattern

● Each worker talks to all servers

● Shard the parameters over different 
servers

● What is the time complexity of 
communication?



Discussion

● What are pros and cons of parameter server

● How can we handle fault tolerance/straggler in both 
allreduce or PS



Integrate Schedule with Networking using Events

A.data lambda cb: ps.receive(A.data)

Receive Function Engine

def event.on_data_received():
# notify engine receive 

complete
cb();

Asynchronous function that takes a 
callback from engine

Use the callback to notify engine
that data receive is finished



Model Parallel Training

● Map parts of workload to different devices

● Require special dependency patterns 
(wave style)

○ e.g. LSTM



Question: How to Write Model Parallel Program?

for i in range(num_layers):
for t in range(num_time_stamp):
out, state = layer[i].forward(data[i][t], state)
data[i+1][t] = out.copyto(device[i])

Scheduler tracks these dependencies
we only talked about single host case 



Breaking up the Computation for Model Parallelism

Label

Data

Worker0 Worker1



Breaking up the Computation for Model Parallelism

Label

Data recvsend

sendrecv

Worker0 Worker1

Partition the graph, put send/recv pairs in the boundary



Discussion

● How to represent pipeline model parallelism

● How can we handle fault tolerance/straggler issues



Summary: What’s Special about Communication

Requirements
● Track dependency correctly
● Resolve resource contention and allocation
● Some special requirement on channel

○ Allreduce: ordered call

Most of them are simplified by a scheduler


