15-884: Machine Learning Systems

Parallel Scheduling

Instructor: Tiangi Chen

Carnegie Mellon University
School of Computer Science catalyst

Logistics

* Project Proposal on Friday
* Talk to us if you any questions

e Guest lectures in the later part of the semester
» Separate zoom links, we will post announcements to the piazza

A Typical Deep Learning System Stack

Parallelization Problem

e Parallel execution of concurrent kernels
e Overlap compute and data transfer

~ Streams
Stream 13 ——— L1 o'+ B . NeSS—————————————
Stream 14 |
Stream 15 L
Stream 16 ———— ' —————————————————————
Stream 17 - kernelfficat’.iny |
Stream 18 kernel(float*, inf °
B s & Parallel over multiple streams
Stream 20 kernel(float*, inf
Stream 21 . kemelffcat.ny |

[=| Streams

- Default | | |
- Stream 13
- Stream 14
- Stream 15 . .
- Stream 16 ernel...
= - ® Serial execution
- Stream 18
- Stream 19

- Stream 20

Recap: Training Worktlow

Gradient Calculation Interactions with Model
input d input
J
fullc " X d fullc Parameter Update
sigmoid _I—>_) 9 sigmoid _
e w = w - n of(w)
fullc d fulle
v 0N
softmax — A d softmax
v

loss (¥— label

Discussions

* What are common parallelization patterns

* How to build system support for these
patterns

* How to handle dynamic computations

input
fullc
sigmoid
fullc
softmax

loss

¥

—

i\

J

v
v

—

€

i
i

d input

d fullc

d sigmoid
d fullc

d softmax

label

Model Parallel Training

e Map parts of workload to different devices

e Benefit from special dependency patterns
(wave style)
o e.g. LSTM

Data Parallelism

key-value store b

e Train replicated version of model in i

each machine I
O

\

e Synchronize the gradient

‘
:

/

examples

Data Parallel Training on Two GPUs

data[gpuO].copyfrom(data[0:50])

data = next_batch()

data[gpu0].copyfrom(data[51:100])

v

fc1[gpu0] = FullcForward(data[gpu0],
fc1_weight[gpu0])

AN

fc2_wgrad[cpu] =
fc2_wgrad[gpu0] + fc2_wgrad[gpu1]

fc2[gpu0] = FullcForward(fc1[gpu0], fc2_weight[gpuO])

N —

v

fc2_weight[cpu]-=

Ir*fc12 wirad|gpu0]

fc2_ograd[gpu0] = LossGrad(fc2[gpu0], label[0:50])

fc2_weight[cpu].copyto(
fc2_weight[gpu0], fc2_weight[gpu1])

V

fc1_ograd[gpuO], fc2_wgrad[gpu0] =

fc1_wgrad[cpu] =
fc1_wgrad[gpu0] + fc1_wgrad[gpu1]

FullcBackward(fc2_ograd[gpuO0], fc2_weight[gpuO0])

_, fe1_wgrad[gpu0] =
FullcBackward(fc1_ograd[gpu0], fc1_weight[gpu0])

-~ 2 7z

fc1_weight[cpu] -=Ir *
fc1_wgrad[gpu0]

fc1_weight[cpu].copyto(
fc1_weight[gpu0] , fc1_weight[gpu1])

\ 4

fc1[gpu1] = FullcForward(data[gpu1],
fc1_weight[gpu1])

A

| fc2[gpul] = FuIIcForward(f(.:1 [gpu1], fc2_weight[gpu1])

v

fc2_ograd[gpu1]= LossGrad(fc2[gpu1], label[51:100])

~J

fc1_ograd[gpu1], fc2_wgrad[gpu1]=
FullcBackward(fc2_ograd[gpu1], fc2_weight[gpu1])

T ‘1’

_, fc1_wgrad[gpu1] =
FullcBackward(fc1_ograd[gpu1], fc1_weight[gpu1])

The Communication Bottleneck

lteration T Synchronization lteration T + 1

fullc-backward

fullc-forward

fullc-backward
;@ _______ syncg2 |
update w2
softmax-forward softmax-backward

softmax-forward

log-loss log-loss

Which operations can run in concurrent with synchronization of g2/w2?

Parallel Program are Hard to Write

lteration T Synchronization lteration T + 1

fullc-backward

fullc-backward
;@ _______ syncg2 |
update w2
softmax-forward softmax-backward

softmax-forward

log-loss log-loss

Need some way to automate the runtime scheduling

Introducing a Generic Scheduler

e Case study a runtime parallel scheduler

 Similar design variants in many systems (e.g. TFRT)

Goal of the Scheduler Interface

o Write Serial-style Program « Runin Parallel

o Possibly dynamically (not declare graph « Respect serial execution order
beforehand)
>>> import mxnet as mx N e 2
>>> A = mx.nd.ones((2,2)) *2 ,/////’\\\\\\\\
>>> C = A + 2 C=A+2 B=A+1
>>> B = A+ 1 \/
>»>> D =B * C D=B*C

Like out of order execution in modern CPUs but
happens across multiple devices

Discussion: How to schedule the following ops

e Random number generator

e Memory recycling A =2

e Cross device copy C=A4+4 2

B =A+

e Send data over network channel \/

Data Flow Dependency

Code Dependency
A =2 e
B =A + 1 — T~
C=A+2 e Po At
D =B * C T~

Write After Read Mutation

Code

I
+ +
N B

> N W™ >
o
w > >N

Dependency
A= 2
= A + 2 = A+ 1

Memory Recycle

Code
A= 2
B =A+1
C=A+ 2

A. del ()

Dependency

Random Number Generator

rnd

Code

= RandomNGenerator()
rnd.uniform(10, -10)

rnd.uniform(10, -10)

Dependency

rnd = RandomNGenerator()

rnd.uniform(10, -10)

rnd.uniform(10, -10)

Goal of Scheduler Interface

* Schedule any resources
* Data
* Random number generator
* Network communicator

* Schedule any operation

DAG Graph based scheduler

Interface:

engine.push(lambda op, deps=[])

e Explicit push operation and its dependencies
e Can reuse the computation graph structure
e Useful when all results are immutable

e Used in typical frameworks (e.g. TensorFlow)

e What are the drawbacks?

o
|

Pitfalls when using Scheduling Mutations

Write after Read

tf.assign(A, B + 1) .

tf.assign(T, B + 2) A mutation aware scheduler can
tf.assign(B, 2) solve these problems much easier

than DAG based scheduler
Read after Write

T = tf.assign(B, B + 1)
tf.assign(A, B + 2)

MXNet Program for Data Parallel Training

for dbatch in train_iter:
% iterating on GPUs
for 1 in range(ngpu):
% pull the parameters
for key in update_keys:
kvstore.pull(key, execs[i].weight array[key])
% compute the gradient
execs[i].forward(is_train=True)
execs[i].backward()
% push the gradient
for key in update_keys:
kvstore.push(key, execs[i].grad array[key])

Mutation aware Scheduler: Tag each Resource

Code Original Resources Tagged Resources
A.var = engine.new_variable() A.data A e
{ vi
B.var = engine.new_variable() B.data B.data

0 N
a
Y

C.var = engine.new _variable() C.data

ta

o

rnd.var = engine.new_variable() rnd.gen rnd.gen

&l

Mutation aware Scheduler: Push Operation

The Tagged Data Pack Reference to Related Push the Operation to
Things into Execution Function Engine

(via Closure)

B.data

N"Q lambda: B.data=A.data+1
A.data B.data / engine.push([Exec Function }

E E _> [Execution Function (box) } |:> read - [E],
mutate= [E])

/

Example Scheduling: Data Flow

A +

A*

1

B

N

N

N

engine.push(lambda: A.data=2,
read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+l,
read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data,
read=[A.var, B.var], mutate=[D.var])

Example Scheduling: Memory Recycle

o
|

A+ 1

del ()

=

N

N

engine.push(lambda: A.data=2,
read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+l,
read=[A.var], mutate= [B.var])

engine.push(lambda: A.data. del (),
read=[], mutate= [A.var])

Example Scheduling: Random Number Generator

= rnd.uniform(10, -10) Ej> engine.push(lambda:
B.data = rnd.gen.uniform(10,-10),

read=[], mutate= [rnd.var, B.var])

engine.push(lambda:
= rnd.uniform(10, -10) [i> C.data = rnd.gen.uniform(10,-10),
read=[], mutate= [rnd.var, C.var])

Queue based Implementation of scheduler

o Like scheduling problem in OS or out of order

— C=A+ 2 {1}

execution in CPUs [A HBe-a+8{
]_

B=A+B {2}

e Maintain a pending operation queue

e Schedule new operations with event update

Enqueue Demonstration

B =A+1 (reads A, mutates B)

C =A+ 2 (reads\ A, mitates C)
A =C* 2 (reads C, A)

D =A+ 3 (reads A, D)

A’s queue:
B’s queue:
C’s queue:

D’s queue:

Enqueue Demonstration

B =A+1 (reads A, mutates B)

C=A+ 2 (reads\ A,

A’s queue:
B’s queue:
C’s queue:

D’s queue:

Enqueue Demonstration

B =A+1 (reads A, mutates B)

C=A+ 2 (reads\ A, \mutates C)

A =C * 2 (reads(C,\mutates A)

D =

A’s queue:

B’s queue:
C’s queue:

D’s queue:

Enqueue Demonstration

B =A+1 (reads A, mutates B)
C=A+ 2 (reads\ A, \mutates C)

A =C * 2 (reads(C,\mutates A)

X Discuss: What is the update
m D)

S policy of queue when an
\\\ operation finishes?
A’s queue:

B’s queue:

D =A+ 3 (reads A,

C’s queue:

D’s queue:

Update Policy

Ready/Running Ops
Request Queue
A i |
A =2 {1} - / | i
B | i
B=2{1 (b i |
{1} c | |
Two operations are pushed. Because A and B are ready to write, we decreasethe
pending counter to 0. The two ops are executed directly.
| operation {wait counter} | var var var
operation and the number of ready to read and ready to read, but still have still have uncompleted mutations.
mutate uncompleted reads. Cannot mutate Cannot read/write

pending dependencies it need to

wait for

Update Policy

Ready/Running Ops
Request Queue
A ; A =2 |
B | |
i i | B =2 |
C i |
Two operations are pushed. Because A and B are ready to write, we decreasethe
pending counter to 0. The two ops are executed directly.
| operation {wait counter} | var var var
operation and the number of ready to read and ready to read, but still have still have uncompleted mutations.
mutate uncompleted reads. Cannot mutate Cannot read/write

pending dependencies it need to

wait for

Update Policy

Request Queue

B=A+B {2} \ A ,

C=A+2 {2} \ B J
C

Another two operations are pushed. Because A and B are not ready to read. The
pushed operations will be added to the pending queues of variables they wait for.

| operation {wait counter} | var var
operation and the number of ready to read and ready to read, but still have
mutate uncompleted reads. Cannot mutate

pending dependencies it need to

wait for

Ready/Running Ops
A=2
B =2

var

still have uncompleted mutations.
Cannot read/write

Update Policy

Ready/Running Ops

Request Queue

w
Il

A+ B {2} C=A+2 {1}

A + B {2}

T

Another two operations are pushed. Because A and B are not ready to read. The
pushed operations will be added to the pending queues of variables they wait for.

| operation {wait counter} | var var var
operation and the number of ready to read and ready to read, but still have still have uncompleted mutations.
mutate uncompleted reads. Cannot mutate Cannot read/write

pending dependencies it need to

wait for

Update Policy

Request

A.del() {1}

Queue

B=A+B {1}

A=2 finishes, as a result, the pending reads on A are activated. B=A+B still cannot run

because it is still wait for B.

| operation {wait counter} |

operation and the number of
pending dependencies it need to

wait for

var

ready to read and
mutate

var

ready to read, but still have
uncompleted reads. Cannot mutate

Ready/Running Ops
B =2
C=A+2

var

still have uncompleted mutations.
Cannot read/write

Update Policy

Ready/Running Ops
Request Queue
(A]/ A.del() {1} \ B =2 |
B | —{B=A+B8 {1} N ;
) Y C=A+2 :
c i i
A.del() is a mutate operation. So it need to wait on A until all previous
reads on A finishes.
| operation {wait counter} | var var var
operation and the number of ready to read and ready to read, but still have still have uncompleted mutations.
mutate uncompleted reads. Cannot mutate Cannot read/write

pending dependencies it need to

wait for

Update Policy

Ready/Running Ops
Request Queue

__

: A], A.del() {1} T B=A+8B

B=2 finishes running. B=A+B is able to run because all its dependencies are
satisfied. A.del() still need to wait for B=A+B to finish for A to turn green

| operation {wait counter} | var var var
operation and the number of ready to read and ready to read, but still have still have uncompleted mutations.
mutate uncompleted reads. Cannot mutate Cannot read/write

pending dependencies it need to

wait for

Update Policy

Request Queue

B=2 finishes running. B=A+B is able to run because all its dependencies are
satisfied. A.del() still need to wait for B=A+B to finish for A to turn green

| operation {wait counter} | var var
operation and the number of ready to read and ready to read, but still have
mutate uncompleted reads. Cannot mutate

pending dependencies it need to

wait for

Ready/Running Ops

__

var

still have uncompleted mutations.
Cannot read/write

Ssummary

o Automatic scheduling makes parallelization easier
e Mutation aware interface to handle resource contention

e Queue based scheduling algorithm

