
15-884: Machine Learning Systems

Parallel Scheduling

Instructor: Tianqi Chen

Logistics

• Project Proposal on Friday
• Talk to us if you any questions

• Guest lectures in the later part of the semester
• Separate zoom links, we will post announcements to the piazza

A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

Parallelization Problem

● Parallel execution of concurrent kernels
● Overlap compute and data transfer

Parallel over multiple streams

Serial execution

Recap: Training Workflow
Gradient Calculation Interactions with Model

Parameter Update

Discussions

• What are common parallelization patterns

• How to build system support for these
patterns

• How to handle dynamic computations

Model Parallel Training

● Map parts of workload to different devices

● Benefit from special dependency patterns
(wave style)
○ e.g. LSTM

Data Parallelism

● Train replicated version of model in
each machine

● Synchronize the gradient

Data Parallel Training on Two GPUs

The Communication Bottleneck

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1
update w1

Iteration T Iteration T + 1

fullc-forward

fullc-forward

softmax-forward

log-loss

w1

w2

data

label

sync g2
update w2

Synchronization

Which operations can run in concurrent with synchronization of g2/w2?

Parallel Program are Hard to Write

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1
update w1

Iteration T Iteration T + 1

fullc-forward

fullc-forward

softmax-forward

log-loss

w1

w2

data

label

sync g2
update w2

Synchronization

Need some way to automate the runtime scheduling

Introducing a Generic Scheduler

• Case study a runtime parallel scheduler

• Similar design variants in many systems (e.g. TFRT)

Goal of the Scheduler Interface

A = 2

B = A + 1C = A + 2

D = B * C

● Write Serial-style Program
● Possibly dynamically (not declare graph

beforehand)

● Run in Parallel
● Respect serial execution order

Like out of order execution in modern CPUs but
happens across multiple devices

Discussion: How to schedule the following ops

● Random number generator

● Memory recycling

● Cross device copy

● Send data over network channel

A = 2

B = A + 1C = A + 2

D = B * C

Data Flow Dependency

A = 2

B = A + 1C = A + 2

D = B * C

A = 2
B = A + 1
C = A + 2
D = B * C

Code Dependency

Write After Read Mutation

A = 2
B = A + 1
C = A + 2
A = 3

A = 2

B = A + 1C = A + 2

A = 3

DependencyCode

Memory Recycle

A = 2
B = A + 1
C = A + 2

A.__del__()

A = 2

B = A + 1C = A + 2

A.__del__()

Code Dependency

Random Number Generator

rnd = RandomNGenerator()

B = rnd.uniform(10, -10)

C = rnd.uniform(10, -10)

rnd = RandomNGenerator()

rnd.uniform(10, -10)

rnd.uniform(10, -10)

DependencyCode

Goal of Scheduler Interface

• Schedule any resources
• Data
• Random number generator
• Network communicator

• Schedule any operation

DAG Graph based scheduler

engine.push(lambda op, deps=[]) A = 2

C = A + B
● Explicit push operation and its dependencies
● Can reuse the computation graph structure
● Useful when all results are immutable
● Used in typical frameworks (e.g. TensorFlow)

● What are the drawbacks?

Interface:

B = 3

Pitfalls when using Scheduling Mutations

Write after Read
tf.assign(A, B + 1)
tf.assign(T, B + 2)
tf.assign(B, 2)

Read after Write
T = tf.assign(B, B + 1)
tf.assign(A, B + 2)

A mutation aware scheduler can
solve these problems much easier
than DAG based scheduler

MXNet Program for Data Parallel Training
for dbatch in train_iter:

% iterating on GPUs
for i in range(ngpu):

% pull the parameters
for key in update_keys:

kvstore.pull(key, execs[i].weight_array[key])
% compute the gradient
execs[i].forward(is_train=True)
execs[i].backward()
% push the gradient
for key in update_keys:

kvstore.push(key, execs[i].grad_array[key])

Mutation aware Scheduler: Tag each Resource

A.data

rnd.gen

v1

B.data

C.data

A.data

rnd.gen

B.data

C.data

v2

v3

v4

Original Resources Tagged Resources Code

A.var = engine.new_variable()

B.var = engine.new_variable()

C.var = engine.new_variable()

rnd.var = engine.new_variable()

Mutation aware Scheduler: Push Operation

Execution Function (box)

A.data

B.data

v2

v1

lambda: B.data=A.data+1

The Tagged Data Pack Reference to Related
Things into Execution Function
(via Closure)

engine.push(Exec Function ,
read = [],

mutate= [])

Push the Operation to
Engine

v1

A.data B.data

v2

Example Scheduling: Data Flow

engine.push(lambda: A.data=2,
read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1,
read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data,
read=[A.var, B.var], mutate=[D.var])

A = 2

B = A + 1

D = A * B

Example Scheduling: Memory Recycle

engine.push(lambda: A.data=2,
read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1,
read=[A.var], mutate= [B.var])

engine.push(lambda: A.data._del__(),
read=[], mutate= [A.var])

A = 2

B = A + 1

A.__del__()

Example Scheduling: Random Number Generator

B = rnd.uniform(10, -10)

C = rnd.uniform(10, -10)

engine.push(lambda:
B.data = rnd.gen.uniform(10,-10),

read=[], mutate= [rnd.var, B.var])

engine.push(lambda:
C.data = rnd.gen.uniform(10,-10),

read=[], mutate= [rnd.var, C.var])

Queue based Implementation of scheduler

A

B

B = A + B {2}

C

C = A + 2 {1}

B = A + B {2}

● Like scheduling problem in OS or out of order
execution in CPUs

● Maintain a pending operation queue

● Schedule new operations with event update

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

B’s queue:

C’s queue:

D’s queue:

A’s queue:

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

A’s queue:

B’s queue:

C’s queue:

D’s queue:

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

A’s queue:

B’s queue:

C’s queue:

D’s queue:

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

A’s queue:

B’s queue:

C’s queue:

D’s queue:

Discuss: What is the update
policy of queue when an
operation finishes?

Update Policy

A

B

C

Queue

A = 2 {1}

B = 2 {1}

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Two operations are pushed. Because A and B are ready to write, we decrease the
pending counter to 0. The two ops are executed directly.

Ready/Running Ops
Request

Update Policy

A

B

C

Queue

A = 2

B = 2

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Two operations are pushed. Because A and B are ready to write, we decrease the
pending counter to 0. The two ops are executed directly.

Ready/Running Ops
Request

Update Policy

A

B

C

Queue

A = 2

B = 2

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Another two operations are pushed. Because A and B are not ready to read. The
pushed operations will be added to the pending queues of variables they wait for.

Ready/Running Ops
Request

B = A + B {2}

C = A + 2 {2}

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Another two operations are pushed. Because A and B are not ready to read. The
pushed operations will be added to the pending queues of variables they wait for.

Ready/Running Ops
Request

B = A + B {2} C = A + 2 {1}

B = A + B {2}

A = 2

B = 2

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Ready/Running Ops
Request

B = A + B {1}

B = 2

A=2 finishes, as a result, the pending reads on A are activated. B=A+B still cannot run
because it is still wait for B.

C = A + 2

A.del() {1}

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Ready/Running Ops
Request

B = A + B {1}

B = 2

A.del() is a mutate operation. So it need to wait on A until all previous
reads on A finishes.

C = A + 2

A.del() {1}

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Ready/Running Ops
Request

B=2 finishes running. B=A+B is able to run because all its dependencies are
satisfied. A.del() still need to wait for B=A+B to finish for A to turn green

A.del() {1} B = A + B

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var
ready to read and
mutate

var
ready to read, but still have
uncompleted reads. Cannot mutate

var

still have uncompleted mutations.
Cannot read/write

Ready/Running Ops
Request

B=2 finishes running. B=A+B is able to run because all its dependencies are
satisfied. A.del() still need to wait for B=A+B to finish for A to turn green

A.del()

Summary
● Automatic scheduling makes parallelization easier

● Mutation aware interface to handle resource contention

● Queue based scheduling algorithm

