15-884: Machine Learning Systems

High-level Optimizations

Instructor: Tianqi Chen

Carnegie Mellon University School of Computer Science

A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

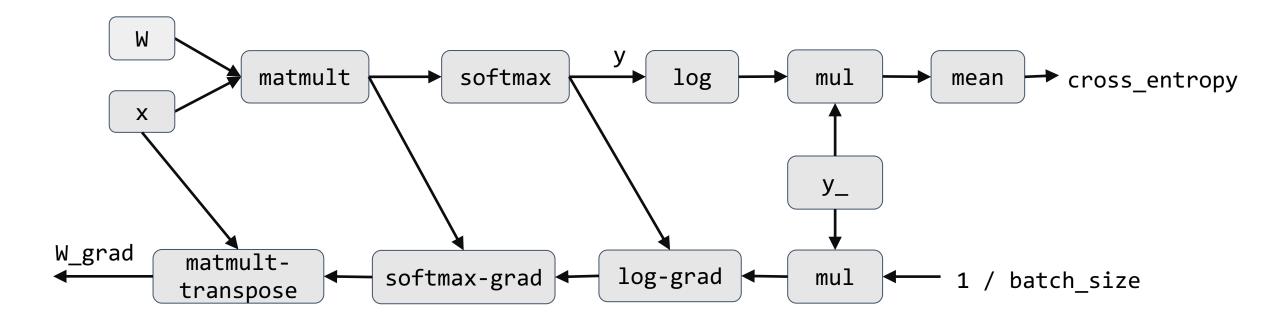
Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

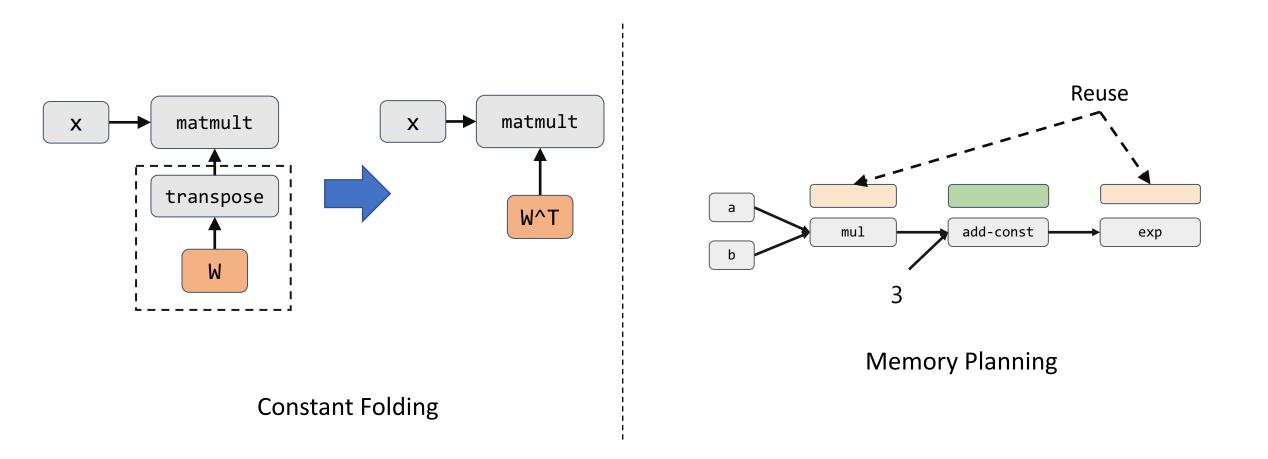
Optimized Device Code, Libraries

Accelerators and Hardware Backends

Computational Graph



Optimizations as Graph Rewrite and Annotation

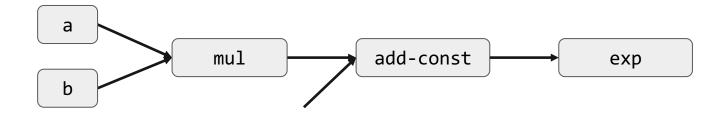


Discussion

What are possible optimizations we can do on a computational graph?

Memory Reuse Planning

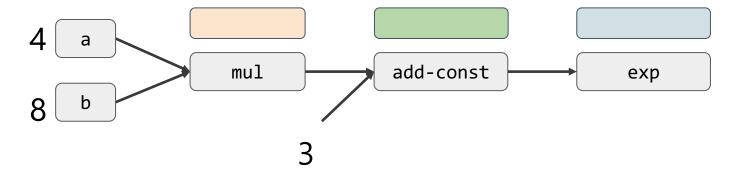
Computational Graph for exp(a * b + 3)



• Allocate temp memory for intermediate computation

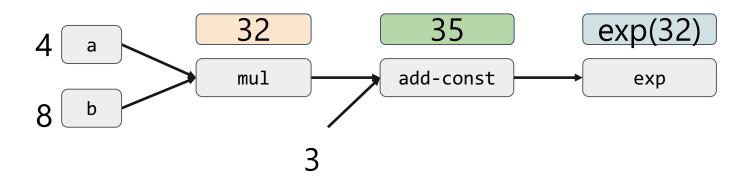
Computational Graph for exp(a * b + 3)

Same color represent same piece of memory



- Allocate temp memory for intermediate computation
- **Traverse and execute** the graph in topo order.

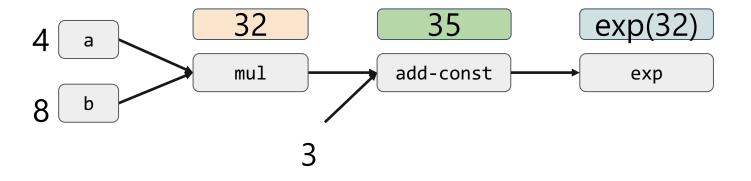
Computational Graph for exp(a * b + 3)



- Allocate temp memory for intermediate computation
- **Traverse and execute** the graph by topo order.

Computational Graph for exp(a * b + 3)

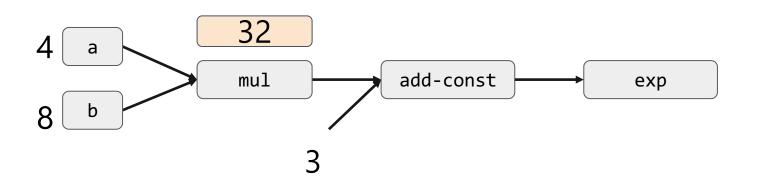
No memory reuse



Dynamic Memory Allocation

- Allocate when needed
- **Recycle** when a memory is not needed.
- Useful for both declarative and imperative executions

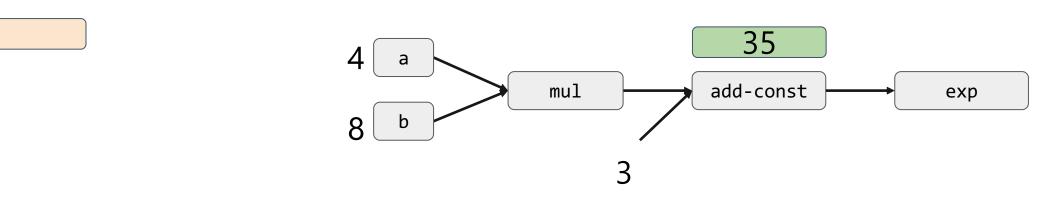
Memory Pool



Dynamic Memory Allocation

- Allocate when needed
- **Recycle** when a memory is not needed.
- Useful for both declarative and imperative executions

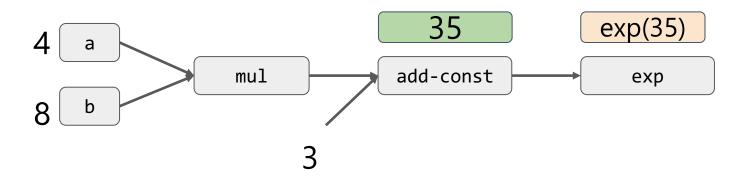
Memory Pool



Dynamic Memory Allocation

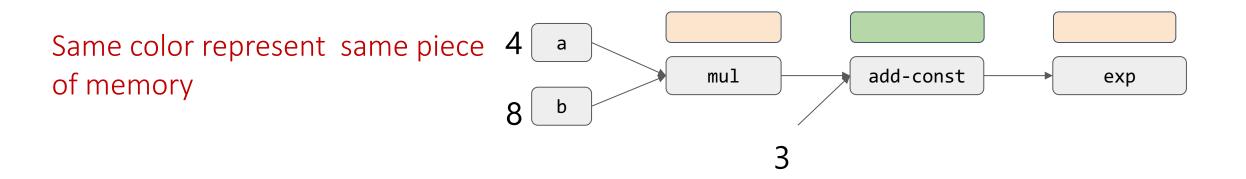
- Allocate when needed
- **Recycle** when a memory is not needed.
- Useful for both declarative and imperative executions

Memory Pool



Static Memory Planning

- Plan for reuse **ahead of time**
- Similar to register allocation algorithm in compilers



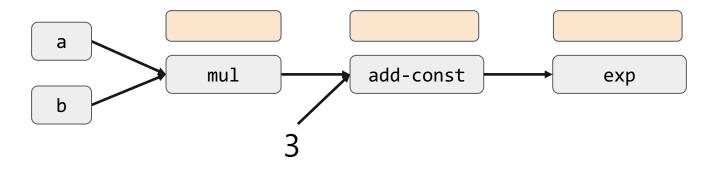
Common Patterns of Memory Planning

- **Inplace** store the result to the same input memory
- **Memory Reuse** reuse memory that are no longer needed.

Inplace Optimization

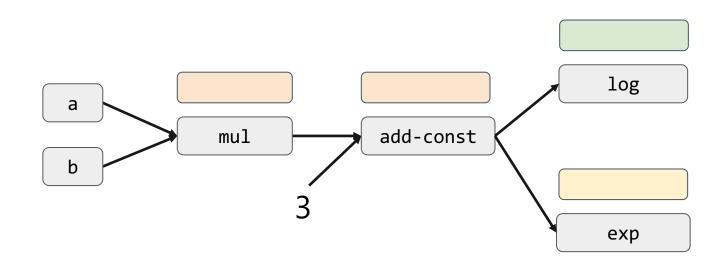
- Store the result to the input memory
- Works if we only care about the final result
- Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3)

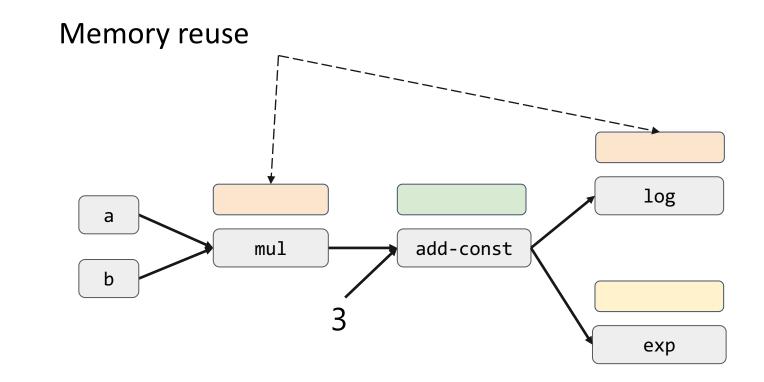


Inplace Pitfalls

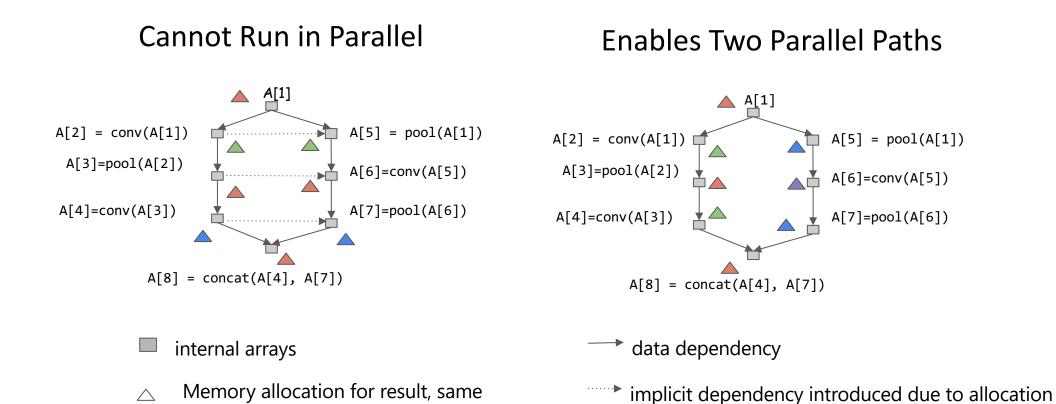
We can only do inplace store if result op is the only consumer of the current value



Memory Reuse



Concurrency vs Memory Optimization

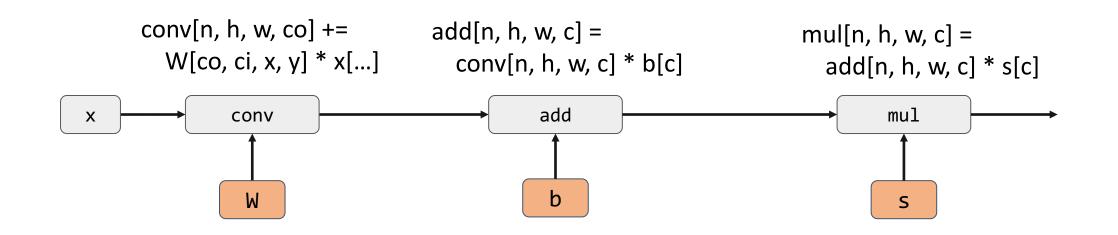


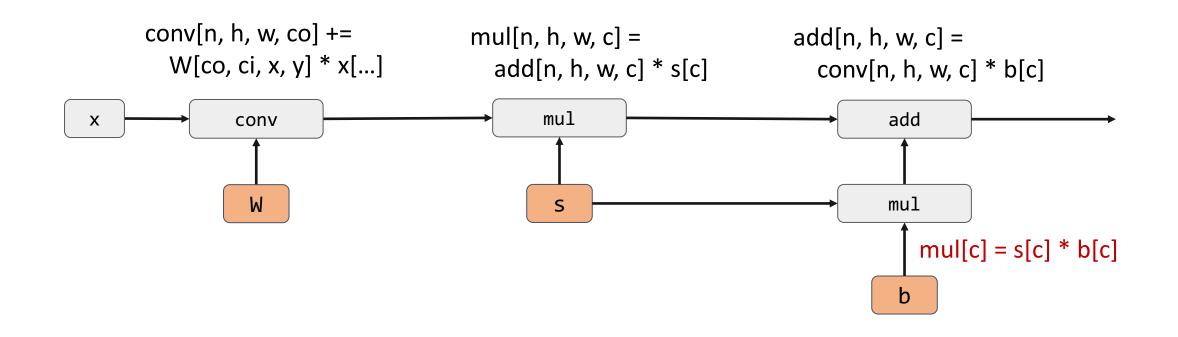
color indicates shared memory.

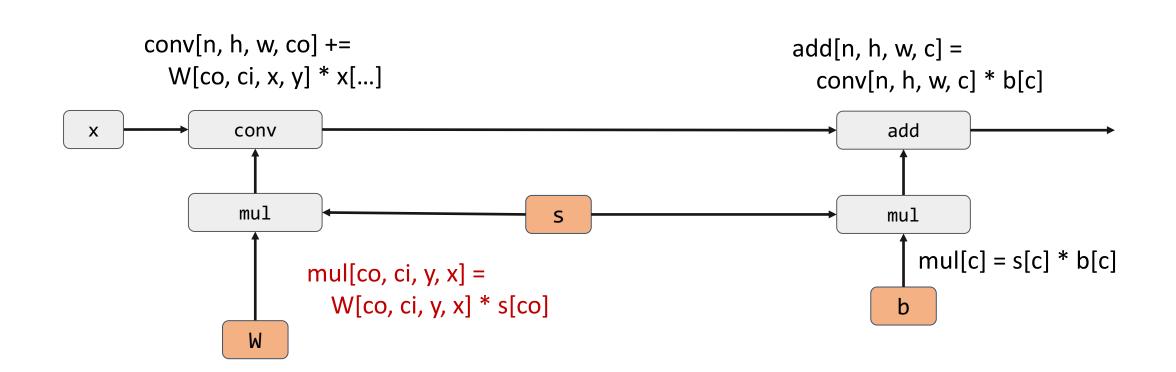
More about Memory Planning

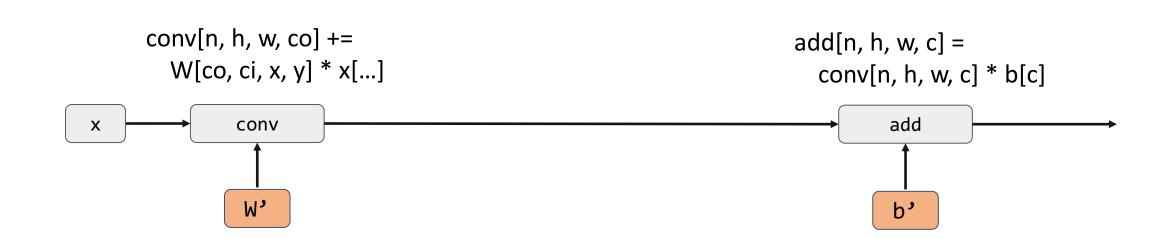
- Re-computation vs materialization (covered in the last lecture)
- More advanced reuse
 - Split a memory into two regions
 - Avoid copy during reshape
- More techniques that saves memory
 - Pruning and quantizing model weights

Rewrite Optimizations



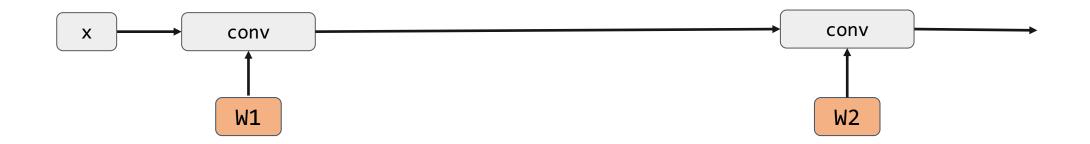




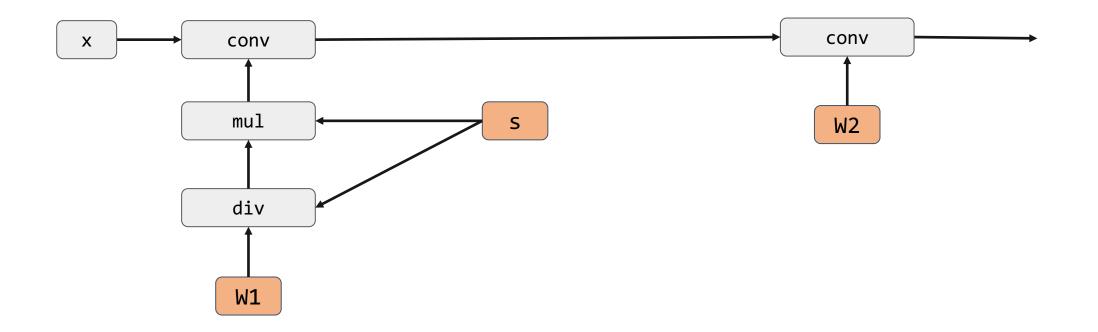


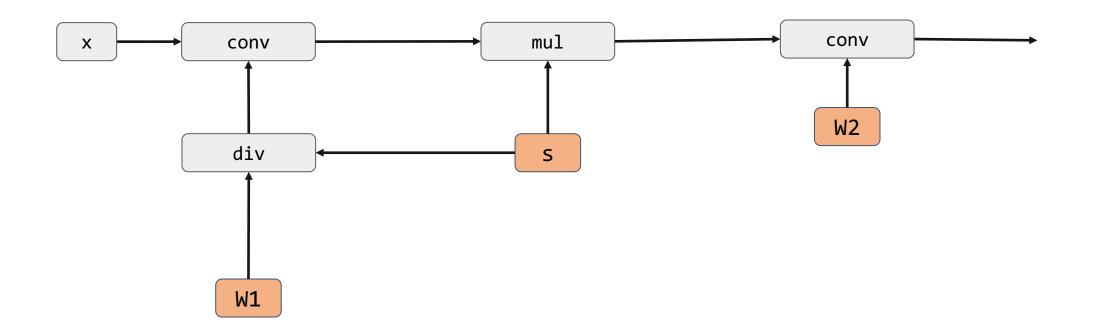
Fold scaling of tensor axis into input weights

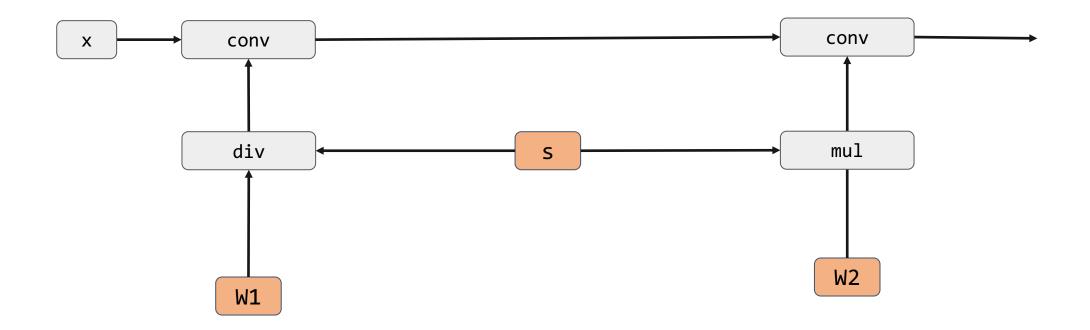
- The current example is about folding backwards
- Similar rules can be applied to fold scaling forward to the weight of next matmul conv

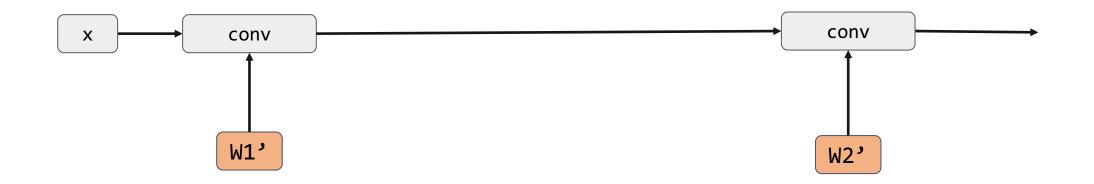


Intermediate scale and activation simplified



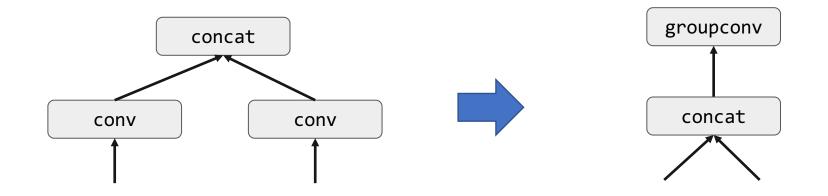






Sometime useful to balance the magnitude of each channels

Equivalence Rewriting



Discussion

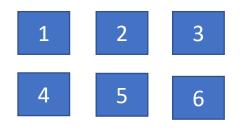
What are other possible rewrite rules?

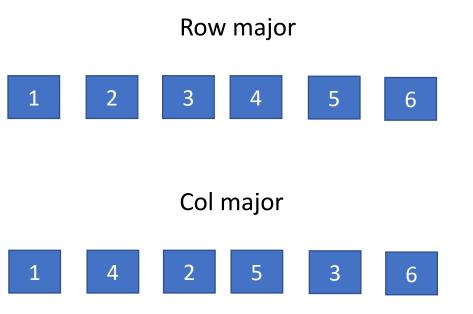
How to choose which rewrite to apply?

Data Layout

How do we store each intermediate tensors

Original Matrix





Typical Data Layout in Vision Workloads

NCHW: X[n, c, h, w] NHWC: X[n, h, w, c]

- n: batch
- h: height
- w: width
- c: channel

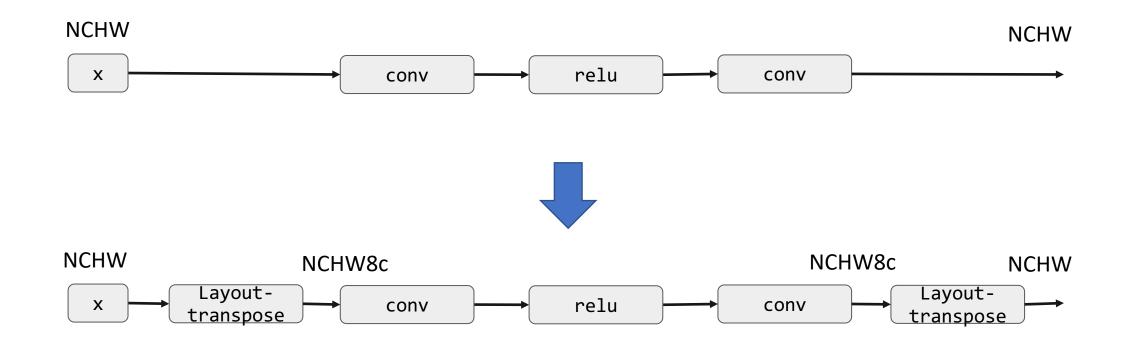
Packed Data Layout

NCHW8c: X[n, c / 8, h, w, c % 8]

- n: batch
- h: height
- w: width
- c: channel

Useful for accelerators with vector unit of 8.

Layout Conversion



Beyond Computational Graphs

Beyond Computational Graph

- State updates
- Recursive function calls
- Data structures

Example: Relay IR



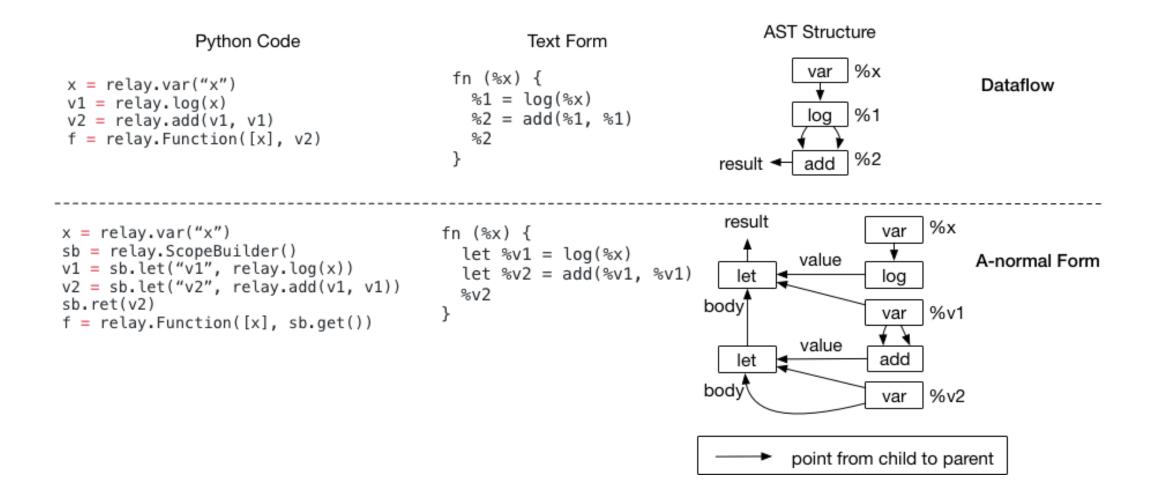
Example: Relay IR

```
def @muladd(%x, %y, %z) {
   %1 = mul(%x, %y)
   %2 = add(%1, %z)
   %2
}
```

```
def @myfunc(%x) {
    %1 = @muladd(%x, 1, 2)
    %2 = @muladd(%1, 2, 3)
    %2
}
```

Multiple function calls

Let-binding Form and Data Flow Form



Discussion

How would additional features (e.g. state, recursive calls) affect optimizations?

Logistics

- More on ML Compilation Later
- No class next Tuesday
- Find your team mates and start to work on proposals