15-884: Machine Learning Systems

High-level Optimizations

Instructor: Tiangi Chen

Carnegie Mellon University
School of Computer Science catalyst

A Typical Deep Learning System Stack

Computational Graph

W
ﬁﬂ:::}%:matmult softmax
X

cross_entropy

w_grad matmult- l [
transpose softmax—grad}<——{ log-grad

1 / batch_size

Optimizations as Graph Rewrite and Annotation

matmult

Constant Folding

N .

WAT

f’
”
-

Memory Planning

Discussion

What are possible optimizations we can do on
a computational graph?

Memory Reuse Planning

Executing a Computation Graph

Computational Graph for exp(a * b + 3)

)‘ mul]7[add-const]—{ exp]

Executing a Computation Graph

* Allocate temp memory for intermediate computation

Computational Graph for exp(a * b + 3)

)| [

Same color represent same

piece of memory

‘v

]7[add-const exp
3

Executing a Computation Graph

Allocate temp memory for intermediate computation

Traverse and execute the graph in topo order.

Computational Graph for exp(a * b + 3)

32] [35] [exp(32))

mul]7[add-const]—{ exp]

3

‘v

Executing a Computation Graph

Allocate temp memory for intermediate computation

Traverse and execute the graph by topo order.

Computational Graph for exp(a * b + 3)

32] [35] [exp(32))

mul]7[add-const]—{ exp]

3

No memory reuse

‘v

Dynamic Memory Allocation

Allocate when needed
Recycle when a memory is not needed.

Useful for both declarative and imperative executions

32]
4
n mul]7[add-const]—{ exp]
8 :

3

Memory Pool

Dynamic Memory Allocation

Allocate when needed
Recycle when a memory is not needed.

Useful for both declarative and imperative executions

Memory Pool

[)

35 |

mul]7[add-const]—{ exp]

3

‘v

Dynamic Memory Allocation

Allocate when needed
Recycle when a memory is not needed.

Useful for both declarative and imperative executions

Memory Pool

35 | exp(35) |

mul]7[add-const J—{ exp J

3

‘v

Static Memory Planning

Plan for reuse ahead of time

Similar to register allocation algorithm in compilers

Same color represent same piece 4

of memory add-const exp

8

v
‘“{i

Common Patterns of Memory Planning

e Inplace store the result to the same input memory

e Memory Reuse reuse memory that are no longer needed.

Inplace Optimization

e Store the result to the input memory
e Works if we only care about the final result

e Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3)

: | | |
%>{ add-const H exp]

Inplace Pittalls

We can only do inplace store if result op is the only consumer of
the current value

DS) J log

3

exp

Memory Reuse

Memory reuse

-~
-~
-~
-~
-~
-~
-~
-
-~
-~
-
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
~ —
~

|
|
|
|
I
|
|
v

[] log

R

3
exp

Concurrency vs Memory Optimization

Cannot Run in Parallel

A Al

A[2] = conv(A[1]) Ef '] A[5] = pool(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[8] = concat(A[4], A[7])

B internal arrays

~ Memory allocation for result, same
color indicates shared memory.

Enables Two Parallel Paths

A A[1]
[

A[2] = conv(A[1]) [1 A[5] = pool(A[1])

A[3]=pool(A[2]) Y. A[6]=conv(A[5])

A[4]=conv(A[3]) A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

—” data dependency

> implicit dependency introduced due to allocation

More about Memory Planning

o Re-computation vs materialization (covered in the last lecture)

e More advanced reuse

o Split a memory into two regions

o Avoid copy during reshape

o« More techniques that saves memory

o Pruning and quantizing model weights

Rewrite Optimizations

Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += add[n, h, w, c] = mul[n, h, w, c] =
W]co, ci, x, y] * x[...] conv[n, h, w, c] * b[c] add[n, h, w, c] * s[c]

conv } { add } { mul]—>
W b S

Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += mul[n, h, w, c] = add[n, h, w, c] =
W(co, ci, x, y] * x[...] add[n, h, w, c] * s[c] conv[n, h, w, c] * b[c]

conv } A{ mul } { add }
W Sﬁ { mul]

mul[c] = s[c] * b[c]

o)

Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += add[n, h, w, c] =
W(co, ci, x, y] * x[...] conv[n, h, w, c] * b[c]
| I
[mul ‘ S { mul]
| — %k
mul[co, ci, y, X] = mul[c] = s[c] * blc]

W]co, ci, y, x] * s[co] b

Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += add[n, h, w, c] =
W(co, ci, x, y] * x[...] conv[n, h, w, c] * b[c]

| e

Fold scaling of tensor axis into input weights

Axis Scale Re-adjustment and Folding

* The current example is about folding backwards

 Similar rules can be applied to fold scaling forward to the weight of next
matmul conv

Axis Rebalancing

conv conv

v
R

~—

Intermediate scale and activation simplified

Axis Rebalancing

v
R

X conv
)
[ml

[div

conv

~—

Axis Rebalancing

Axis Rebalancing

v
R

conv

.

Axis Rebalancing

~—

[Z =: conv { conv
W1’ W2’

Sometime useful to balance the
magnitude of each channels

Equivalence Rewriting

[wwe |
[/JL\]

Discussion
What are other possible rewrite rules?

How to choose which rewrite to apply?

Data Layout

How do we store each intermediate tensors

Original Matrix Row major
n
K

Col major

BEODEEEBRD

Typical Data Layout in Vision Workloads

NCHW: X[n, c, h, w]
NHWC: X|[n, h, w, c]

* n: batch

* h: height
e w: width
e c: channel

Packed Data Layout
NCHWS8c: X[n,c/8, h,w, c% 8]

* n: batch

* h: height

* w: width Useful for accelerators with
e c: channel vector unit of 8.

Layout Conversion

NCHW NCHW

@ 4[conv H relu H conv }

4

NCHW NCHWSc NCHWS8c NCHW

Layout- conv] [1] [conv Layout-
transpose ° relu transpose

Beyond Computational Graphs

Beyond Computational Graph

 State updates

e Recursive function calls

 Data structures

Example: Relay IR

Python Code Text Form AST Structure
ar (%
x = relay.var(“x”) fn (%x) { V* Bs
vl = relay.log(x) %1 = log(%x) .
v2 = relay.add(vl, v1) %2 = add(%1, %1) log | %1
f = relay.Function([x], v2) %2 « v
} result «+- add |%?2

Example: Relay IR

def @muladd(%x, %y, %z) {
%1 = mul(%x, %Y)
%2 = add(%1, %z)
%2

}

def @myfunc(%x) {
%1 = @muladd(%x, 1, 2)
%2 = @muladd(%1, 2, 3)
%2

}

Multiple function calls

Let-binding Form and Data Flow Form

Python Code Text Form AST Structure
ar | %
x = relay.var(“x") fn (%x) { v*r ox Dataflow
vl = relay.log(x) %1 = log(%x) .
v2 = relay.add(vl, v1) %2 = add(%1, %1) log | %1
f = relay.Function([x], v2) %2 q/ ¥
} result add | %2
x = relay.var(“x") fn (%x) { res;ult var | %X
sb = relay.ScopeBuilder() let %vl = log(%x) v
vl = sh.let(“v1”, relay.log(x)) let %v2 = adg(%vl’ %v1) let 4\@;9 log A-nommal Form
v2 = sh.let(“v2”, relay.add(vl, v1)) o2 ‘\
sb.ret(v2) } body var | %v1
f = relay.Function([x], sbh.get()) \
value '
let \4— add
bodyk_/ var | %v2

——* point from child to parent

Discussion

How would additional features (e.g. state,
recursive calls) affect optimizations?

Logistics

* More on ML Compilation Later
* No class next Tuesday

* Find your team mates and start to work on proposals

