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Instructor: Tianqi Chen



A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends



Computational Graph
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Optimizations as Graph Rewrite and Annotation
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Memory Planning
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Discussion 

What are possible optimizations we can do on 
a computational graph?



Memory Reuse Planning



Executing a Computation Graph

a

b
mul add-const exp

Computational Graph for exp(a * b + 3) 



Executing a Computation Graph

Same color represent  same 
piece of memory

a

b
mul add-const

3
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Computational Graph for exp(a * b + 3) 

• Allocate temp memory for intermediate computation 



Executing a Computation Graph

a

b
mul add-const

3

exp

32 35 exp(32)

• Allocate temp memory for intermediate computation 

• Traverse and execute the graph in topo order. 
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8

Computational Graph for exp(a * b + 3) 



Executing a Computation Graph

a

b
mul add-const

3

exp

32 35 exp(32)

• Allocate temp memory for intermediate computation 

• Traverse and execute the graph by topo order. 
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Computational Graph for exp(a * b + 3) 

No memory reuse



Dynamic Memory Allocation
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Memory Pool

• Allocate when needed

• Recycle when a memory is not needed.

• Useful for both declarative and imperative executions



Dynamic Memory Allocation
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• Allocate when needed

• Recycle when a memory is not needed.

• Useful for both declarative and imperative executions

Memory Pool



Dynamic Memory Allocation
• Allocate when needed

• Recycle when a memory is not needed.

• Useful for both declarative and imperative executions
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Static Memory Planning
• Plan for reuse ahead of time

• Similar to register allocation algorithm in compilers
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Same color represent  same piece 
of memory



Common Patterns of Memory Planning 

● Inplace store the result to the same input memory

● Memory Reuse reuse memory that are no longer needed.



Inplace Optimization

a

b
mul add-const exp

3

● Store the result to  the input memory
● Works if we only care about the final result 

● Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3) 



Inplace Pitfalls

a

b
mul add-const

exp
3

log

We can only do inplace store if result op is the only consumer of 
the current value



Memory Reuse
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Memory reuse



Concurrency vs Memory Optimization

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

internal arrays data dependency

Memory allocation for result, same 
color indicates shared memory.

implicit dependency introduced due to allocation

Cannot Run in Parallel Enables Two Parallel Paths



More about Memory Planning
● Re-computation vs materialization (covered in the last lecture)

● More advanced reuse

○ Split a memory into two regions

○ Avoid copy during reshape

● More techniques that saves memory

○ Pruning and quantizing model weights



Rewrite Optimizations



Axis Scale Re-adjustment and Folding

x conv mul

W

add[n, h, w, c] = 
conv[n, h, w, c] * b[c]

s

conv[n, h, w, co] += 
W[co, ci, x, y] * x[…]

add

b

mul[n, h, w, c] = 
add[n, h, w, c] * s[c]



Axis Scale Re-adjustment and Folding

x conv mul

W

add[n, h, w, c] = 
conv[n, h, w, c] * b[c]

s

conv[n, h, w, co] += 
W[co, ci, x, y] * x[…]

add

b

mul[n, h, w, c] = 
add[n, h, w, c] * s[c]

mul

mul[c] = s[c] * b[c]



Axis Scale Re-adjustment and Folding

x conv

W

add[n, h, w, c] = 
conv[n, h, w, c] * b[c]

s

conv[n, h, w, co] += 
W[co, ci, x, y] * x[…]

add

b
mul[co, ci, y, x] = 

W[co, ci, y, x] * s[co]

mul

mul[c] = s[c] * b[c]

mul



Axis Scale Re-adjustment and Folding

x conv

W’

add[n, h, w, c] = 
conv[n, h, w, c] * b[c]

conv[n, h, w, co] += 
W[co, ci, x, y] * x[…]

add

b’

Fold scaling of tensor axis into input weights



Axis Scale Re-adjustment and Folding
• The current example is about folding backwards

• Similar rules can be applied to fold scaling forward to the weight of next 
matmul conv



Axis Rebalancing

x conv

W1

conv

W2

Intermediate scale and activation simplified



Axis Rebalancing

x conv

W1

conv

W2smul

div



Axis Rebalancing

x conv

W1

conv

W2
s

mul

div



Axis Rebalancing

x conv

W1

conv

W2

sdiv mul



Axis Rebalancing

x conv

W1’

conv

W2’

Sometime useful to balance the 
magnitude of each channels



Equivalence Rewriting

conv conv

concat groupconv

concat



Discussion 

What are other possible rewrite rules?

How to choose which rewrite to apply?



Data Layout

How do we store each intermediate tensors

1 2 3

4 5 6

Original Matrix 

1 2 3 4 5 6

Row major

1 4 2 5 3 6

Col major



Typical Data Layout in Vision Workloads

NCHW:  X[n, c, h, w]
NHWC:  X[n, h, w, c]

• n: batch
• h: height
• w: width
• c: channel



Packed Data Layout

NCHW8c:  X[n, c / 8, h, w, c % 8]

• n: batch
• h: height
• w: width
• c: channel

Useful for accelerators with 
vector unit of 8. 



Layout Conversion 

x conv conv

NCHW NCHW

relu

x conv conv

NCHW

relu
Layout-
transpose

NCHW NCHW8c NCHW8c
Layout-
transpose



Beyond Computational Graphs



Beyond Computational Graph

• State updates

• Recursive function calls

• Data structures



Example: Relay IR



Example: Relay IR

def @muladd(%x, %y, %z) { 
%1 = mul(%x, %y) 
%2 = add(%1, %z) 
%2 

} 

def @myfunc(%x) { 
%1 = @muladd(%x, 1, 2) 
%2 = @muladd(%1, 2, 3) 
%2 

}

Multiple function calls



Let-binding Form and Data Flow Form



Discussion 

How would additional features (e.g. state, 
recursive calls) affect optimizations?



Logistics

• More on ML Compilation Later

• No class next Tuesday

• Find your team mates and start to work on proposals


