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A Typical Deep Learning System Stack
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Optimizations as Graph Rewrite and Annotation
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Discussion

What are possible optimizations we can do on
a computational graph?




Memory Reuse Planning



Executing a Computation Graph

Computational Graph for exp(a * b + 3)
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Executing a Computation Graph

* Allocate temp memory for intermediate computation

Computational Graph for exp(a * b + 3)
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Executing a Computation Graph

Allocate temp memory for intermediate computation

Traverse and execute the graph in topo order.

Computational Graph for exp(a * b + 3)
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Executing a Computation Graph

Allocate temp memory for intermediate computation

Traverse and execute the graph by topo order.

Computational Graph for exp(a * b + 3)
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Dynamic Memory Allocation

Allocate when needed
Recycle when a memory is not needed.

Useful for both declarative and imperative executions
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Dynamic Memory Allocation

Allocate when needed
Recycle when a memory is not needed.

Useful for both declarative and imperative executions
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Dynamic Memory Allocation

Allocate when needed
Recycle when a memory is not needed.

Useful for both declarative and imperative executions
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Static Memory Planning

Plan for reuse ahead of time

Similar to register allocation algorithm in compilers
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Common Patterns of Memory Planning

e Inplace store the result to the same input memory

e Memory Reuse reuse memory that are no longer needed.



Inplace Optimization

e Store the result to the input memory
e Works if we only care about the final result

e Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3)
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Inplace Pittalls

We can only do inplace store if result op is the only consumer of
the current value
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Memory Reuse

Memory reuse
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Concurrency vs Memory Optimization

Cannot Run in Parallel

A Al

A[2] = conv(A[1]) Ef '] A[5] = pool(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[8] = concat(A[4], A[7])

B internal arrays

~  Memory allocation for result, same
color indicates shared memory.

Enables Two Parallel Paths

A A[1]
[

A[2] = conv(A[1]) [1 A[5] = pool(A[1])

A[3]=pool(A[2]) Y. A[6]=conv(A[5])

A[4]=conv(A[3]) A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

—” data dependency

> implicit dependency introduced due to allocation



More about Memory Planning

o Re-computation vs materialization (covered in the last lecture)

e More advanced reuse

o Split a memory into two regions

o Avoid copy during reshape

o« More techniques that saves memory

o Pruning and quantizing model weights



Rewrite Optimizations



Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += add[n, h, w, c] = mul[n, h, w, c] =
W]co, ci, x, y] * x[...] conv[n, h, w, c] * b[c] add[n, h, w, c] * s[c]

conv } { add } { mul ]—>
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Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += mul[n, h, w, c] = add[n, h, w, c] =
W(co, ci, x, y] * x[...] add[n, h, w, c] * s[c] conv[n, h, w, c] * b[c]

conv } A{ mul } { add }
W Sﬁ { mul ]

mul[c] = s[c] * b[c]
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Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += add[n, h, w, c] =
W(co, ci, x, y] * x[...] conv[n, h, w, c] * b[c]
| I
[ mul ‘ S { mul ]
| — %k
mul[co, ci, y, X] = mul[c] = s[c] * blc]

W]co, ci, y, x] * s[co] b




Axis Scale Re-adjustment and Folding

conv[n, h, w, co] += add[n, h, w, c] =
W(co, ci, x, y] * x[...] conv[n, h, w, c] * b[c]

| e

Fold scaling of tensor axis into input weights



Axis Scale Re-adjustment and Folding

* The current example is about folding backwards

 Similar rules can be applied to fold scaling forward to the weight of next
matmul conv



Axis Rebalancing
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Intermediate scale and activation simplified



Axis Rebalancing
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Axis Rebalancing




Axis Rebalancing
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Axis Rebalancing
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[Z =: conv { conv
W1’ W2’

Sometime useful to balance the
magnitude of each channels



Equivalence Rewriting
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Discussion
What are other possible rewrite rules?

How to choose which rewrite to apply?



Data Layout

How do we store each intermediate tensors

Original Matrix Row major
n
K

Col major
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Typical Data Layout in Vision Workloads

NCHW: X[n, c, h, w]
NHWC: X|[n, h, w, c]

* n: batch

* h: height
e w: width
e c: channel



Packed Data Layout
NCHWS8c: X[n,c/8, h,w, c% 8]

* n: batch

* h: height

* w: width Useful for accelerators with
e c: channel vector unit of 8.



Layout Conversion

NCHW NCHW

@ 4[ conv H relu H conv }
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Beyond Computational Graphs



Beyond Computational Graph

 State updates

e Recursive function calls

 Data structures



Example: Relay IR

Python Code Text Form AST Structure
ar (%
x = relay.var(“x”) fn (%x) { V* Bs
vl = relay.log(x) %1 = log(%x) .
v2 = relay.add(vl, v1) %2 = add(%1, %1) log | %1
f = relay.Function([x], v2) %2 « v
} result «+- add |%?2




Example: Relay IR

def @muladd(%x, %y, %z) {
%1 = mul(%x, %Y)
%2 = add(%1, %z)
%2

}

def @myfunc(%x) {
%1 = @muladd(%x, 1, 2)
%2 = @muladd(%1, 2, 3)
%2

}

Multiple function calls



Let-binding Form and Data Flow Form

Python Code Text Form AST Structure
ar | %
x = relay.var(“x") fn (%x) { v*r ox Dataflow
vl = relay.log(x) %1 = log(%x) .
v2 = relay.add(vl, v1) %2 = add(%1, %1) log | %1
f = relay.Function([x], v2) %2 q/ ¥
} result add | %2
x = relay.var(“x") fn (%x) { res;ult var | %X
sb = relay.ScopeBuilder() let %vl = log(%x) v
vl = sh.let(“v1”, relay.log(x)) let %v2 = adg(%vl’ %v1) let 4\@;9 log A-nommal Form
v2 = sh.let(“v2”, relay.add(vl, v1)) o2 ‘\
sb.ret(v2) } body var | %v1
f = relay.Function([x], sbh.get()) \
value '
let \4— add
bodyk_/ var | %v2

——* point from child to parent




Discussion

How would additional features (e.g. state,
recursive calls) affect optimizations?




Logistics

* More on ML Compilation Later
* No class next Tuesday

* Find your team mates and start to work on proposals



