
15-884: Machine Learning Systems

High-level Optimizations

Instructor: Tianqi Chen

A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

Computational Graph

cross_entropy

W

x
matmult softmax log

y_

mul mean
y

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

Optimizations as Graph Rewrite and Annotation

W

x matmult

Constant Folding

transpose
W^T

x matmult

Memory Planning

a

b
mul add-const

3

exp

Reuse

Discussion

What are possible optimizations we can do on
a computational graph?

Memory Reuse Planning

Executing a Computation Graph

a

b
mul add-const exp

Computational Graph for exp(a * b + 3)

Executing a Computation Graph

Same color represent same
piece of memory

a

b
mul add-const

3

exp
4

8

Computational Graph for exp(a * b + 3)

• Allocate temp memory for intermediate computation

Executing a Computation Graph

a

b
mul add-const

3

exp

32 35 exp(32)

• Allocate temp memory for intermediate computation

• Traverse and execute the graph in topo order.

4

8

Computational Graph for exp(a * b + 3)

Executing a Computation Graph

a

b
mul add-const

3

exp

32 35 exp(32)

• Allocate temp memory for intermediate computation

• Traverse and execute the graph by topo order.

4

8

Computational Graph for exp(a * b + 3)

No memory reuse

Dynamic Memory Allocation

a

b
mul add-const

3

exp

324

8

Memory Pool

• Allocate when needed

• Recycle when a memory is not needed.

• Useful for both declarative and imperative executions

Dynamic Memory Allocation

a

b
mul add-const

3

exp

354

8

• Allocate when needed

• Recycle when a memory is not needed.

• Useful for both declarative and imperative executions

Memory Pool

Dynamic Memory Allocation
• Allocate when needed

• Recycle when a memory is not needed.

• Useful for both declarative and imperative executions

a

b
mul add-const

3

exp

exp(35)354

8

Memory Pool

Static Memory Planning
• Plan for reuse ahead of time

• Similar to register allocation algorithm in compilers

a

b
mul add-const

3

exp
4

8

Same color represent same piece
of memory

Common Patterns of Memory Planning

● Inplace store the result to the same input memory

● Memory Reuse reuse memory that are no longer needed.

Inplace Optimization

a

b
mul add-const exp

3

● Store the result to the input memory
● Works if we only care about the final result

● Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3)

Inplace Pitfalls

a

b
mul add-const

exp
3

log

We can only do inplace store if result op is the only consumer of
the current value

Memory Reuse

a

b
mul add-const

exp
3

log

Memory reuse

Concurrency vs Memory Optimization

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

internal arrays data dependency

Memory allocation for result, same
color indicates shared memory.

implicit dependency introduced due to allocation

Cannot Run in Parallel Enables Two Parallel Paths

More about Memory Planning
● Re-computation vs materialization (covered in the last lecture)

● More advanced reuse

○ Split a memory into two regions

○ Avoid copy during reshape

● More techniques that saves memory

○ Pruning and quantizing model weights

Rewrite Optimizations

Axis Scale Re-adjustment and Folding

x conv mul

W

add[n, h, w, c] =
conv[n, h, w, c] * b[c]

s

conv[n, h, w, co] +=
W[co, ci, x, y] * x[…]

add

b

mul[n, h, w, c] =
add[n, h, w, c] * s[c]

Axis Scale Re-adjustment and Folding

x conv mul

W

add[n, h, w, c] =
conv[n, h, w, c] * b[c]

s

conv[n, h, w, co] +=
W[co, ci, x, y] * x[…]

add

b

mul[n, h, w, c] =
add[n, h, w, c] * s[c]

mul

mul[c] = s[c] * b[c]

Axis Scale Re-adjustment and Folding

x conv

W

add[n, h, w, c] =
conv[n, h, w, c] * b[c]

s

conv[n, h, w, co] +=
W[co, ci, x, y] * x[…]

add

b
mul[co, ci, y, x] =

W[co, ci, y, x] * s[co]

mul

mul[c] = s[c] * b[c]

mul

Axis Scale Re-adjustment and Folding

x conv

W’

add[n, h, w, c] =
conv[n, h, w, c] * b[c]

conv[n, h, w, co] +=
W[co, ci, x, y] * x[…]

add

b’

Fold scaling of tensor axis into input weights

Axis Scale Re-adjustment and Folding
• The current example is about folding backwards

• Similar rules can be applied to fold scaling forward to the weight of next
matmul conv

Axis Rebalancing

x conv

W1

conv

W2

Intermediate scale and activation simplified

Axis Rebalancing

x conv

W1

conv

W2smul

div

Axis Rebalancing

x conv

W1

conv

W2
s

mul

div

Axis Rebalancing

x conv

W1

conv

W2

sdiv mul

Axis Rebalancing

x conv

W1’

conv

W2’

Sometime useful to balance the
magnitude of each channels

Equivalence Rewriting

conv conv

concat groupconv

concat

Discussion

What are other possible rewrite rules?

How to choose which rewrite to apply?

Data Layout

How do we store each intermediate tensors

1 2 3

4 5 6

Original Matrix

1 2 3 4 5 6

Row major

1 4 2 5 3 6

Col major

Typical Data Layout in Vision Workloads

NCHW: X[n, c, h, w]
NHWC: X[n, h, w, c]

• n: batch
• h: height
• w: width
• c: channel

Packed Data Layout

NCHW8c: X[n, c / 8, h, w, c % 8]

• n: batch
• h: height
• w: width
• c: channel

Useful for accelerators with
vector unit of 8.

Layout Conversion

x conv conv

NCHW NCHW

relu

x conv conv

NCHW

relu
Layout-
transpose

NCHW NCHW8c NCHW8c
Layout-
transpose

Beyond Computational Graphs

Beyond Computational Graph

• State updates

• Recursive function calls

• Data structures

Example: Relay IR

Example: Relay IR

def @muladd(%x, %y, %z) {
%1 = mul(%x, %y)
%2 = add(%1, %z)
%2

}

def @myfunc(%x) {
%1 = @muladd(%x, 1, 2)
%2 = @muladd(%1, 2, 3)
%2

}

Multiple function calls

Let-binding Form and Data Flow Form

Discussion

How would additional features (e.g. state,
recursive calls) affect optimizations?

Logistics

• More on ML Compilation Later

• No class next Tuesday

• Find your team mates and start to work on proposals

