15-884: Machine Learning Systems Federated Learning

Carnegie Mellon University School of Computer Science

Tian Li

Federated Learning

Privacy-preserving training in heterogeneous, (potentially) massive networks

Federated Learning

Privacy-preserving training in heterogeneous, (potentially) massive networks

Networks of remote devices

cross-device setting

cross-silo setting

Example Applications

Anomaly detection in IoT devices

- Adapting to pedestrian behavior on autonomous vehicles
- Personalized healthcare on wearable devices
- Predictive maintenance for industrial machines

Assumptions: (1) local data is important (2) labels are available (3) privacy is a concern

Workflow & Challenges power, etc **Privacy & security** user privacy constraints

Systems heterogeneity variable hardware, network connectivity,

Statistical heterogeneity highly non-identically distributed data

Expensive communication massive, slow networks

Federated Optimization: Challenges

Systems and statistical heterogeneity (non-identical data) can bias the optimization procedure; can affect the modeling approach Systems heterogeneity variable hardware, network connectivity, power, etc

Statistical heterogeneity highly non-identically distributed data

Expensive communication massive, slow networks

> **Privacy & security** user privacy constraints

Federated Optimization: Challenges

Systems heterogeneity variable hardware, network connectivity, power, etc

Statistical heterogeneity highly non-identically distributed data

Expensive communication massive, slow networks

> **Privacy & security** user privacy constraints

Federated Optimization: Challenges

Systems heterogeneity variable hardware, network connectivity, power, etc

Statistical heterogeneity highly non-identically distributed data

Expensive communication massive, slow networks

> **Privacy & security** user privacy constraints

How does heterogeneity affect federated optimization methods?

Federated Optimization in Heterogeneous Networks Li, Sahu, Sanjabi, Zaheer, Talwalkar, Smith, MLSys 2020

Federated Optimization: Formulation

Typically solving an empirical risk minimization (ERM) objective:

$$\min_{w} \sum_{k=1}^{N} p_{k} \sum_{i=1}^{n_{k}} \ell(h(x_{k}^{(i)}; w), y_{k}^{(i)})$$

Federated Optimization: Formulation

Risk: $R(h) = \mathbb{E}_{k \sim Q} \mathbb{E}_{(x,y) \sim P_k} [\ell(h(x;w),y)]$

Empirical Risk: $R_{\text{emp}}(h) = \sum_{k=1}^{N} p_k \sum_{i=1}^{n_k} \ell(h(x_k^{(i)}; w), y_k^{(i)})$

Typically solving an empirical risk minimization (ERM) objective:

$$\min_{w} \sum_{k=1}^{N} p_k \sum_{i=1}^{n_k} \ell(h(x_k^{(i)}; w), y_k^{(i)})$$

Optimization for FL: Federated Averaging (FedAvg*)

At each communication round:

- Server randomly selects a subset of devices & sends the current global model w^t
- \sim Each selected device k updates w^t for E epochs of SGD to optimize F_k & sends the new local model back
- Server aggregates local models to form a new global model w^{t+1}

* McMahan, H. Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." AISTATS, 2017. 12

- Simple method
- Using local updates can lead to much faster convergence empirically
- Works well in many settings (especially non-convex)

[Aside] How does FedAvg Differ from Distributed SGD?

Local updating is not new*

- one-shot averaging
- ADMM
- COCOA
- Local SGD

Federated settings defer in terms of:

- heterogeneous data
- partial device participation
- often for non-convex objectives

[Zhang, Duchi, Wainwright, Communication-Efficient Algorithms for Statistical Optimization, JMLR 2013] [Boyd et al, Distributed Optimization and Statistical Learning via ADMM, FnT in ML, 2010] [Jaggi & Smith et al, Communication-Efficient Distributed Dual Coordinate Ascent, NeurIPS 2014] [MacDonald et al, Efficient large-scale distributed training of conditional maxent models, NeurIPS 2009]

statistical heterogeneity

highly non-identically distributed data

too much local work can hurt convergence

Bonawitz, Keith, et al. "Towards Federated Learning at Scale: System Design." MLSys, 2019.

dropping slow devices can exacerbate convergence issues

Challenge: Heterogeneity

FedProx: A Framework For Federated Optimization

Modified Local Subproblem: m

- The proximal term explicitly limits the impact of heterogeneous local updates
- Don't drop devices: instead [safely] incorporate partial work
- Generalization of FedAvg; Allows for any local solver
- Theoretical guarantees (with a dissimilarity assumption)

$$\min_{w_k} F_k(w_k) + \frac{\mu}{2} \| w_k - w^t \|^2$$

$$a \text{ proximal term}$$

FedProx: Convergence Analysis

0 partial device participation heterogeneity:

$\mathbb{E}\left[\|\nabla F_k(w)\|^2\right] \le \|\nabla f(w)\|^2 B^2$

* used in other contexts, e.g., gradient diversity to quantify the benefits of scaling distributed SGD

Yin, Dong, et al. "Gradient Diversity: a Key Ingredient for Scalable Distributed Learning." AISTATS, 2018.

High-level: converges despite non-IID data, local updating, and

Introduces notion of B-dissimilarity in to characterize statistical

IID data: B = 1non-IID data: B > 1

Impact of Statistical Heterogeneity

Increasing heterogeneity leads to worse convergence

Setting $\mu > 0$ can help to combat this

How does heterogeneity affect federated optimization methods?

Heterogeneity can lead to: Slower convergence, reduced stability, divergence Critical to analyze and evaluate federated methods with: Non-IID data, partial / variable participation

Can we equalize performance across heterogeneous networks?

Fair Resource Allocation in Federated Learning Li, Sanjabi, Beirami, Smith, ICLR 2020

FL: Traditional Empirical Risk Minimization ERM: $\min \left(p_1 F_1 + p_2 F_2 + \cdots + p_N F_N \right)$ no accuracy duarantees for individual devices Can we encourage a more fair (i.e., more uniform) distribution of the model performance across devices?

Fair Resource Allocation Objective **<u>q-FFL:</u>** $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)$

- \circ Inspired by α -fairness for fair resource allocation in wireless networks

*Fairness without Demographics in Repeated Loss Minimization, Hashimoto et al, ICML 2018 *Agnostic Federated Learning, Mohri, Sivek, Suresh, ICML 2019

• A tunable framework (q = 0: previous objective; $q = \infty$: minimax fairness*)

Fair Resource Allocation Objective **<u>q-FFL:</u>** $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)$

Theory

Increasing *q* results in more 'uniform' accuracy distributions (in terms of various uniformity measures such as variance)

Generalization guarantees (recover the known case of $q \rightarrow \infty$)

Empirical Results

on average, cut variance of accuracy by 45% while maintaining mean accuracy

TERM can increase or decrease the influence of outliers to enable fairness or robustness

Can we equalize performance across heterogeneous networks?

- Vanilla ERM may deliver poor quality of service in heterogeneous networks

or q-FFL/TERM allows for flexible trade-off between fairness and accuracy

How to model federated data?

Personalization for Federated Learning

local

personalized models not learn from peers

non-personalized models learn from peers

global

personalized models

Approaches for Personalization

Multi-task Learning Jointly learn shared, yet personalized models

Fine-tuning

Meta-learning Learn initialization over multiple tasks, then train locally

Learn a global model, then "fine-tune"/adapt it on local data See also: transfer learning, domain adaptation

Meta-learning & Federated learning

Algorithm 1 Connects FL and MAML (left), Reptile Batch Version(middle), and FedAvg (right).

OuterLoop/Server learning rate α **Require:** : Reptile Step K. function $InnerLoop(\theta, T_i, \beta)$ InnerLoop/Client learning rate β Initial model parameters θ Sample K-shot data $D_{i,k}$ from T_i . while not done do $\theta_i = \theta$ Sample batch of tasks/clients $\{T_i\}$ for each local step i from 1 to K do for Sampled task/client T_i do $\theta_i = \theta_i - \beta \nabla_{\theta} L(\theta_i, D_{i,k})$ if FL then $q_i, w_i = ClientUpdate(\theta, T_i, \beta)$ else if MAML then end for $g_i = InnerLoop(\theta, T_i, \beta)$ Return $g_i = \theta_i - \theta$ end function end if end for **Require:** : Meta Batch Size M. if FL then function $OuterLoop(\theta, \{g_i\}, \alpha)$ $\theta = ServerUpdate(\theta, \{g_i, w_i\}, \alpha)$ $\theta = \theta + \alpha \frac{1}{M} \sum_{i=1}^{M} g_i$ else if MAML then $\theta = OuterLoop(\theta, \{g_i\}, \alpha)$ Return θ end if end function end while

Require: FedAvg Local Epoch E. function $ClientUpdate(\theta, T_i, \beta)$ Split local dataset into batches B $\theta_i = \theta$ for each local epoch i from 1 to E do for batch $b \in B$ do $\theta_i = \theta_i - \beta \nabla_{\theta} L(\theta_i, b)$ end for end for Return $g_i = \theta_i - \theta$ end function **Require:** Clients per training round M. function $ServerUpdate(\theta, \{g_i, w_i\}, \alpha)$

> $\theta = \theta + \alpha \sum_{i=1}^{M} w_i g_i / \sum_{i=1}^{M} w_i$ Return θ

end function

[Jiang et al, Improving federated learning personalization via model agnostic meta learning, 2019] [Khodak, Balcan, Talwalkar, Adaptive gradient-based meta-learning methods, NeurIPS 2019]

Personalization for Practical Constraints

constraints in federated learning

representation disparity

against data and model poisoning attacks

privacy security communication

competing with each other

Ditto: Fair and Robust Federated Learning Through Personalization Li, Hu, Beirami, Smith, ArXiv 2021 Best paper at ICLR Secure ML Workshop

Ditto: Global-regularized Federated MTL

personalization to achieve robustness and fairness simultaneously

* easy to implement in federated settings * accurate, robust, and fair

$$[v_k; w^*) := F_k(v_k) + \frac{\lambda}{2} ||v_k - w^*||^2$$

$$\stackrel{*}{\leftarrow} \arg\min_{w} G\left(F_1(w), \dots, F_k(w)\right)$$

* simple form of MTL: ensure personalized models are close to global model

Ditto Solver

solver for the global model w^*

Algorithm 1: Ditto for Personalized FL

* a scalable, simple personalization add-on for any federated global solver * preserves the practical properties of the global FL solver (e.g., communication, privacy) * with convergence guarantees

global model w^t to them

obtain w_k^t :

(giobai moael)

Experiments: Competing Constraints

Experiments: Benefits of Personalization

on average, improve absolute accuracy by ~6% over the strongest robust baseline reduce variance by ~10% over STOA fair methods

How to model federated data?

robustness, etc.

Personalization is a promising approach (need to be scalable, automated) Personalization has additional benefits beyond accuracy, e.g., fairness,

What's next??

[Credit: B. McMahan, FL Tutorial, NeurIPS 2020]

[Credit: B. McMahan, FL Tutorial, NeurIPS 2020]

[Credit: B. McMahan, FL Tutorial, NeurIPS 2020]

Additional Reading

- FedAvg: Communication-Efficient Learning of Deep Networks from Decentralized Data, McMahan et al, AISTATS 2017
- MOCHA: Federated Multi-Task Learning, Smith et al, NeurIPS 2017
- [White Paper] Federated Learning: Challenges, Methods, and Future Directions, Li et al,
 - IEEE Signal Processing Magazine, 2020
- NeurIPS 2020 federated learning tutorial, <u>https://sites.google.com/view/fl-tutorial</u>

Carnegie Mellon University School of Computer Science

Questions?

tianli@cmu.edu

Carnegie Mellon University School of Computer Science Tian Li