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Federated Learning

Privacy-preserving training in heterogeneous, (potentially) massive networks
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Federated Learning

Privacy-preserving training in heterogeneous, (potentially) massive networks

Networks of remote devices Networks of isolated organizations
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Example Applications

@J Anomaly detection in l0T devices
15 Adapting to pedestrian behavior on autonomous vehicles
Personalized healthcare on wearable devices

Predictive maintenance for industrial machines

Assumptions: (1) local data is important (2) labels are available (3) privacy is a concern



Workflow & Challenges

N
Objective: minf(w) = Z piki(w)
" k=1

Systems heterogeneity

variable hardware, network connectivity,
Training setup: loss on device k power, etc

server [0 — Statistical heterogeneity
highly non-identically distributed data

devices : D
Expensive communication

massive, slow networks

Privacy & security
user privacy constraints



Federated Optimization: Challenges

Systems heterogeneity
variable hardware, network connectivity,
power, etc

Systems and statistical heterogeneity
(non-identical data) can bias the
optimization procedure;

can affect the modeling approach Statistical heterogeneity

highly non-identically distributed data

Expensive communication
massive, slow networks

Privacy & security
user privacy constraints




Federated Optimization: Challenges

Systems heterogeneity
variable hardware, network connectivity,
power, etc

Statistical heterogeneity
highly non-identically distributed data

reduce the size of messages per round
reduce the communication rounds Expensive communication
reduce the number of selected massive, slow networks

devices per round

Privacy & security
user privacy constraints




Federated Optimization: Challenges

Systems heterogeneity
variable hardware, network connectivity,
power, etc

Statistical heterogeneity
highly non-identically distributed data

1) keep data on local devices
2) differentially private mechanisms
3) crypto-based methods

Expensive communication
massive, slow networks

(not the focus today) Privacy & security

user privacy constraints




How does heterogeneity affect federated
optimization methods?

Federated Optimization in Heterogeneous Networks
Li, Sahu, Sanjabi, Zaheer, Talwalkar, Smith, MLSys 2020



Federated Optimization: Formulation

N
Objective: minfiw) = Y pFi(w)

Typically solving an empirical risk
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Federated Optimization: Formulation

Risk:
R(h) = Ei.p -(x,y)NPk[f(h(x; w),y)] Typically solving an empirical risk
minimization (ERM) obijective:
N n,
Empirical Risk: min ) p, Z £(h(xW; w), y(’))
w
k=1 =1

N n
Remp(h) = ) p ) £(h(x; w), y)

k=1 =1




Optimization for FL: Federated Averaging (FedAvg¥)

At each communication round:

o Server randomly selects a subset of devices & ~ Simple method

sends the current global model w’ ~ Using local updates can lead to
© Each selected device k updates w' for E epochs much faster convergence

of SGD to optimize F) & sends the new local empirically

model back ~ Works well in many settings
~ Server aggregates local models to form a new (especially non-convex)

global model w't!

* McMahan, H. Brendan, et al. "Communication-efhicient learning of deep networks from decentralized data.”" AISTATS, 2017.
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[Aside] How does FedAvg Differ from Distributed SGD?

Local updating is not new* Federated settings defer in terms of:
~ one-shot averaging ~ heterogeneous data
- ADMM ~ partial device participation
- COCOA - often for non-convex objectives
- Local SGD
* [Zhang, Duchi, Wainwright, Communication-Efficient Algorithms for Statistical Optimization, JMLR 2013]
* [Boyd et al, Distributed Optimization and Statistical Learning via ADMM, FnT in ML, 2010]
* [Jaggi & Smith et al, Communication-Efficient Distributed Dual Coordinate Ascent, NeurlPS 2014]
* [MacDonald et al, Efficient large-scale distributed training of conditional maxent models, NeurlPS 2009]
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Challenge: Heterogeneity

statistical heterogeneity systems heterogeneity
highly non-identically distributed data stragglers
too much local work can hurt convergence dropping slow devices can exacerbate convergence issues
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Bonawitz, Keith, et al. "Towards Federated Learning at Scale: System Design." MLSys, 2019.
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Challenge: Heterogeneity



FedProx: A Framework For Federated Optimization

Modified Local Subproblem: min F,(w,) + — H We—W H
Wi
a proximal term

- The proximal term explicitly limits the impact of wt
heterogeneous local updates

~ Don’t drop devices: instead [safely] incorporate partial work

~ Generalization of FedAvg; Allows for any local solver

© Theoretical guarantees (with a dissimilarity assumption)

10



FedProx: Convergence Analysis

~ High-level: converges despite non-1ID data, local updating, and

partial device participation
~ Introduces notion of B-dissimilarity in to characterize statistical

heterogeneity:

ID data: B = 1
non-l1ID data: B > 1

= | IVEWIIP| < IIVAw)II*B?

* used in other contexts, e.g., gradient diversity to quantify the benefits of scaling distributed SGD

Yin, Dong, et al. ""Gradient Diversity: a Key Ingredient for Scalable Distributed Learning.” AISTATS, 2018.

17
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Impact of Statistical Heterogeneity
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Increasing heterogeneity leads to worse convergence

Setting 1 > 0 can help to combat this
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How does heterogeneity affect federated
optimization methods?

o Heterogeneity can lead to:
o Slower convergence, reduced stability, divergence
o Critical to analyze and evaluate federated methods with:
o Non-IID data, partial / variable participation



Can we equalize performance across
heterogeneous networks?

Fair Resource Allocation in Federated Learning
Li, Sanjabi, Beirami, Smith, ICLR 2020



FL: Traditional Empirical Risk Minimization

W

O
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Can we encourage a more fair (i.e., more uniform) distribution
of the model performance across devices?

test accuracy

0.2 0.4 0.6 0.8
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Fair Resource Allocation Objective

, 1 q+1 q+1 g+ 1
g-FFL: min o1 pF, +p, F, + -+ +py Fy
W

o Inspired by a-fairness for fair resource allocation in wireless networks

© Atunable framework (g = O: previous objective; g = co: minimax fairness*)

*Fairness without Demographics in Repeated Loss Minimization, Hashimoto et al, ICML 2018

*Agnostic Federated Learning, Mohri, Sivek, Suresh, ICML 2019
20



Fair Resource Allocation Objective

, 1 q+1 q+1 g+ 1
g-FFL: min o1 pF, +p, F, + -+ +py Fy
W

o Theory
Generalization guarantees (recover the known case of g = o)

Increasing ¢ results in more ‘uniform’ accuracy distributions

(in terms of various uniformity measures such as variance)
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Fair Resource Allocation Objective

. 1 q+1 q+1 q-|—1
W
Baseline
., g-FFL

— (

test accuracy
0.2 0.4 0.6 0.8
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Empirical Results
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on average, cut variance of accuracy by 457% while maintaining mean accuracy
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Tilted ERM (TERM) Objective

linear regression

Empirical Risk Minimization
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TERM can increase or decrease the influence of outliers to
enable fairness or robustness

20



Can we equalize performance across
heterogeneous networks?

~ Vanilla ERM may deliver poor quality of service in heterogeneous
networks

~ g-FFL/TERM allows for flexible trade-off between fairness and accuracy



How to model federated data?



Personalization for Federated Learning
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Approaches for Personalization

Multi-task Learning
Jointly learn shared, yet personalized models
. Fine-tuning
© Learn a global model, then “fine-tune”/adapt it on local data
‘ ~ See also: transfer learning, domain adaptation

m AN
LA

>4

Meta-learning
< Learn initialization over multiple tasks, then train locally




Meta-learning & Federated learning

Algorithm 1 Connects FLL. and MAML (left), Reptile Batch Version(middle), and FedAvg (right).

OuterLoop/Server learning rate o Require: : Reptile Step K.
InnerLoop/Client learning rate 3 function InnerLoop(0, T;, B)
Sample K -shot data D; j from T}.
0 — 0

for each local step 1 from 1 to K do

Initial model parameters 6
while not done do
Sample batch of tasks/clients {T’; }
for Sampled task/client 7’; do
if FL then
gi, w; = ClientUpdate(0,T;, B)
else if MAML then
g; = InnerLoop(0,T;, B)

0 = ServerUpdate(0,{g;, w;}, o)
else if MAML then
0 = OuterLoop(0,{g:}, @)
end if
end while

g — 0. Bval(g, D 1)

end for
Return g; = 0; — @
end if end function
end for Require: : Meta Batch Size M.
if FL then function Outer Loop(0, {g;}, @)

Return 6

end function

Require: FedAvg Local Epoch E.
function C'lientU pdate(0, T;, 3)
Split local dataset into batches B
e — 17
for each local epoch 1 from 1 to E do
for batch b € B do
0; =0; — BVeL(6;,b)
end for
end for
Returng; = 0; — 6
end function
Require: Clients per training round M.
function ServerUpdate(0,{g;, w;}, @)

0=0+ad> M, wigi/ M, w;
Return 6

end function

[Jiang et al, Improving federated learning personalization via model agnostic meta learning, 2019]
[Khodak, Balcan, Talwalkar, Adaptive gradient-based meta-learning methods, NeurIPS 2019



Personalization for Practical Constraints

constraints in federated learning

fairness | representation disparity

robustness | against data and model poisoning attacks

privacy
security w* € argmin G (Fl(w), ...,Fk(w))
communication i
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Subject D
Thank you for the feedback ‘

Ditto: Fair and Robust Federated Learning Through Personalization
Li, Hu, Beirami, Smith, ArXiv 2021
Best paper at ICLR Secure ML Workshop

B




Ditto: Global-regularized Federated MTL

to achieve robustness and fairness simultaneously

global-regularized

for each device k, 'Ocal'oss {
Ditto: min A (v, w*) ;= Fi(v) + EHVk — w¥||>
Vi

s.t. w*e€argminG (Fl(w), ...,Fk(w))

w

 simple form of MTL: ensure personalized models are close to global model
** easy to implement in federated settings
* accurate, robust, and fair



Ditto Solver

solver for the global model w*  + personalization add-on

Algorithm 1: Ditto for Personalized FL

1 Input: K, 7T, s, A, n, w07 {vg}kE[K]
2 fort=0,---,T—1do
3 Server randomly selects a subset of devices S;, and sends the current global model w® to them
4 for device kK € S; in parallel do
5 Solve the local sub-problem of G(-) inexactly starting from w® to obtain w?:
w}, < UPDATE _GLOBAL(w®, VFj(w"))

/* Solve hy(vg;wb) */

6 Update vy for s local iterations:
Ve = UV — n(VFk(vk) - )\(’Uk — 'wt))
Send A% := w! — w* back

7 Server aggregates {A! }:

w't! < AGGREGATE (v, {A] }res,1)

8 return {v}reik) (personalized models), w' (global model)

a scalable, simple personalization add-on for any federated global solver

preserves the practical properties of the global FL solver (e.g., communication, privacy)
with convergence guarantees




Experiments: Competing Constraints
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Experiments: Benetits of Personalization
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Ditto is more robust
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under various attacks

on average, improve absolute accuracy by ~6% over the strongest robust baseline

reduce variance by ~10% over STOA fair methods



How to model federated data:

- Personalization is a promising approach (need to be scalable, automated)

o Personalization has additional benefits beyond accuracy, e.g., fairness,
robustness, etc.



What’s next??



Improving efficiency and effectiveness :

Make trained models

¢ smaller?
O Reduce wall-clock training
(= — , time?
@ Personalize for each
device?
} P server
| = — Y
o —
client @ »
devices ' —
} > federated
G training o
model N
model deployment *
developme °
i

engineer Solve more types of ML
problems (RL, unsupervised
and semi-supervised, active

Support ML workflows like
debugging and
hyperparameter searches?

® Do more with fewer
devices or less resources
per device?

learning, ...)?

39 [Credit: B. McMahan, FL Tutorial, NeurlPS 2020]



Ensuring fairness and addressing sources of bias -

Bias in training data
(amount, distribution)?

client
devices

federated ﬁ i\

training

0

=]
0
0

model
deployment

Bias in which devices ®

successfully send updates?

: Inference population
engineer

different than training
population?

Bias in device availability?

[Credit: B. McMahan, FL Tutorial, NeurlPS 2020]



Robustness to attacks and failures

Inference-time evasion

attacks

Compromised device

sending malicious

client
devices

federated : a i\

training

model

model deployment .
development
0

engineer

updates
server

Device dropout, data
corruption in transmission

Devices training on
compromised data (data
poisoning)

[Credit: B. McMahan, FL Tutorial, NeurlPS 2020]



Additional Reading

_ FedAvg: Communication-Efficient Learning of Deep Networks from Decentralized Data,
McMahan et al, AISTATS 2017
_ MOCHA: Federated Multi-Task Learning, Smith et al, NeurlPS 2017

_ [White Paper]| Federated Learning: Challenges, Methods, and Future Directions, Li et al,

|[EEE Signal Processing Magazine, 2020

_ NeurlPS 2020 federated learning tutorial, https://sites.google.com/view/fl-tutorial

(Carnegie Mellon University
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