15-884: Machine Learning Systems

ML Frameworks and Abstractions

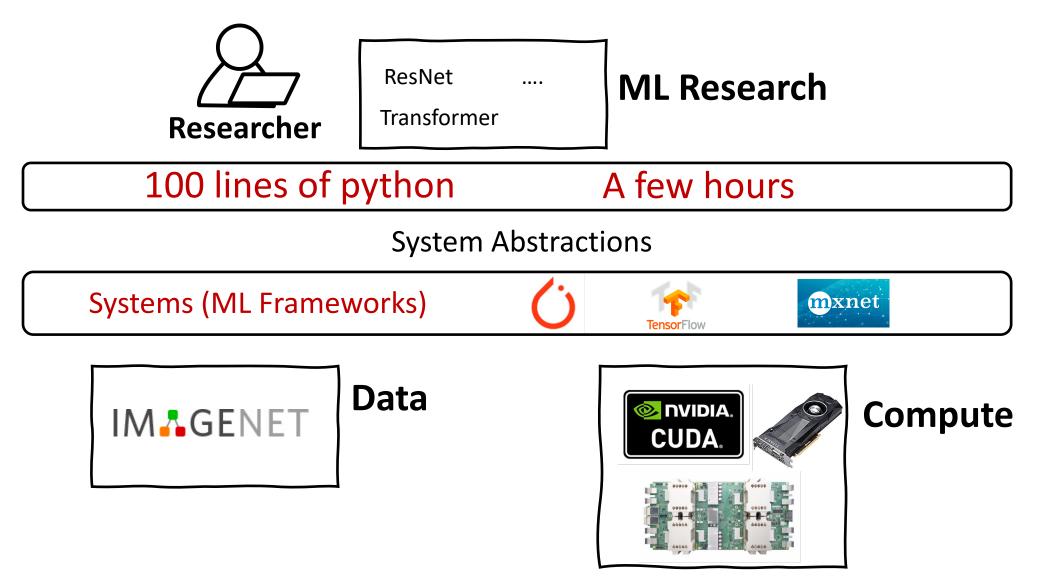
Instructor: Tianqi Chen

Carnegie Mellon University School of Computer Science

Class Information

- Website: https://catalyst.cs.cmu.edu/15-884-mlsys-sp21
 - Bookmark this, contains links all resources(including ones below)
- Piazza: discussions and announcements
- Use Zoom for lectures, recordings are available via Canvas
- Gradscope: used for all assignments

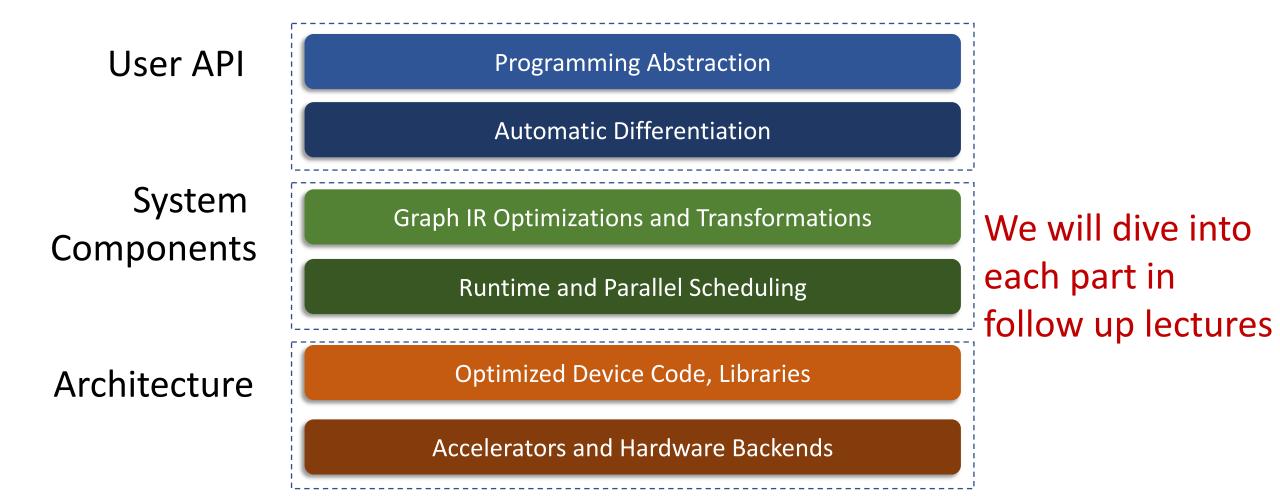
Machine Learning Systems



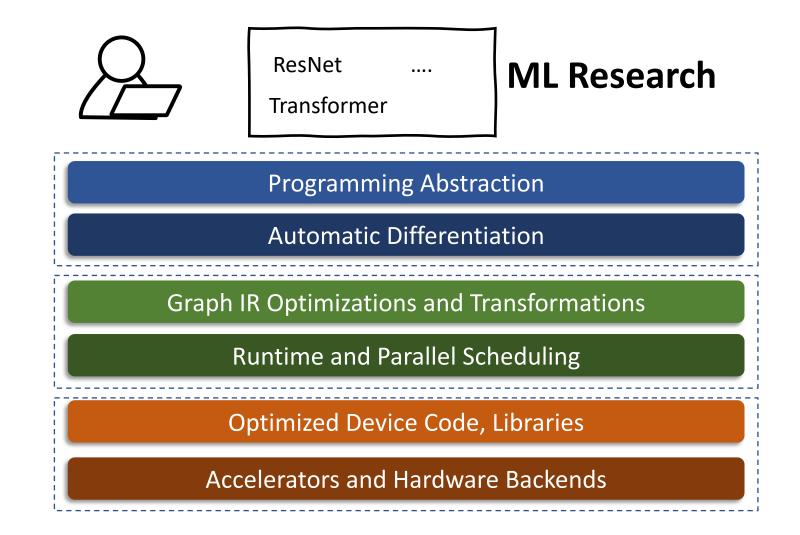
Machine Learning Systems

We won't focus on a specific one, but will discuss the common and useful elements of these systems

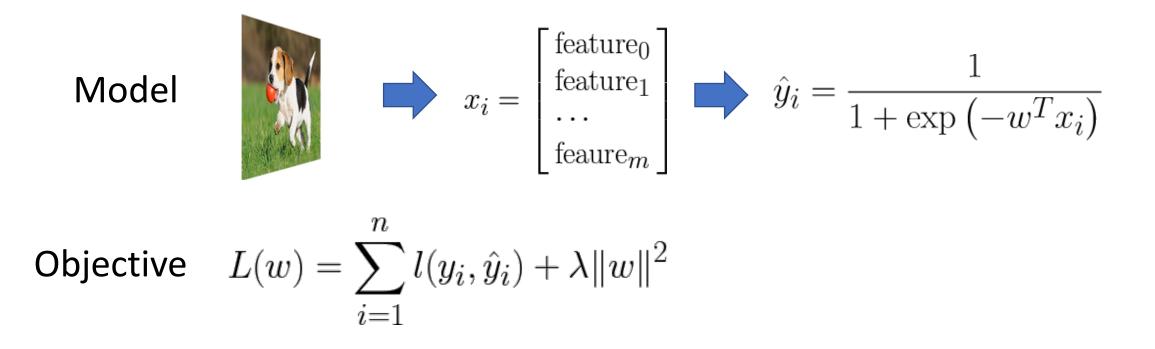
A Typical Deep Learning System Stack



A Typical Deep Learning System Stack



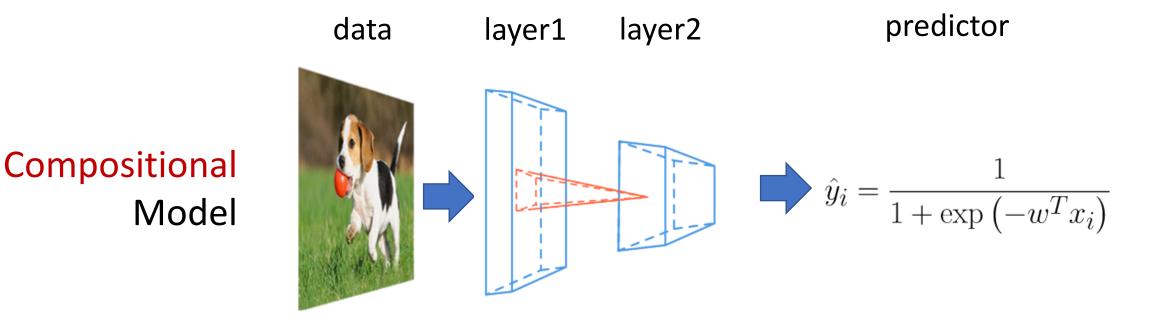
Quick Recap: Elements of Machine Learning



Training
$$w \leftarrow w - \eta \nabla_w L(w)$$

Optimization)

Quick Recap: Deep Learning



End to end training

Ingredients of a Deep Learning

- Model and architecture
- Objective function and training techniques
 - Which feedback should be used to guide the learning?
 - Supervised, self-supervised, RL, adversarial learning
- Regularization, normalization and initialization (coupled with modeling)
 - Batch norm, dropout, Xavier
- Get good amount of data

Application affects System Design

Application Data Management

Data Processing

System Design

Declarative language(SQL) Execution planner Storage engine Distributed Primitive(MapReduce) Fault tolerance layer Workload migration

Ingredients of a Deep Learning

- Model and architecture
- Objective function and training techniques
 - Which feedback should be used to guide the learning?
 - Supervised, self-supervised, RL, adversarial learning
- Regularization, normalization and initialization (coupled with modeling)
 - Batch norm, dropout, Xavier
- Get good amount of data

Discussion how can these ingredients affect the system design of ML frameworks

A Typical Deep Learning System Stack

User API

Programming Abstraction

Automatic Differentiation

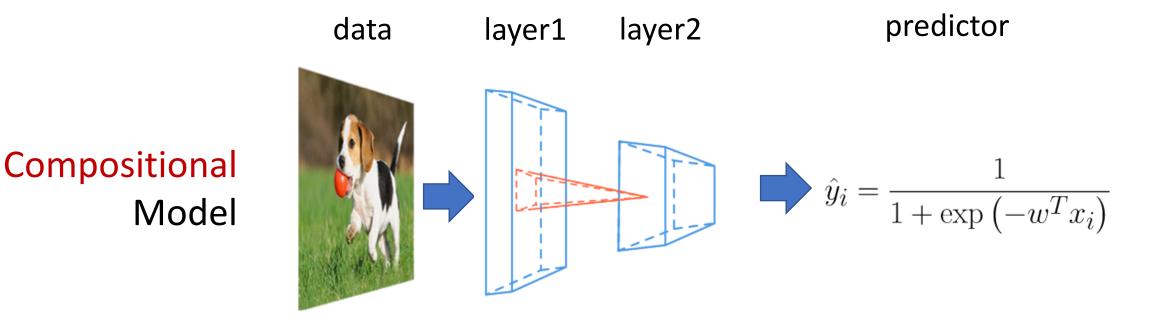
Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

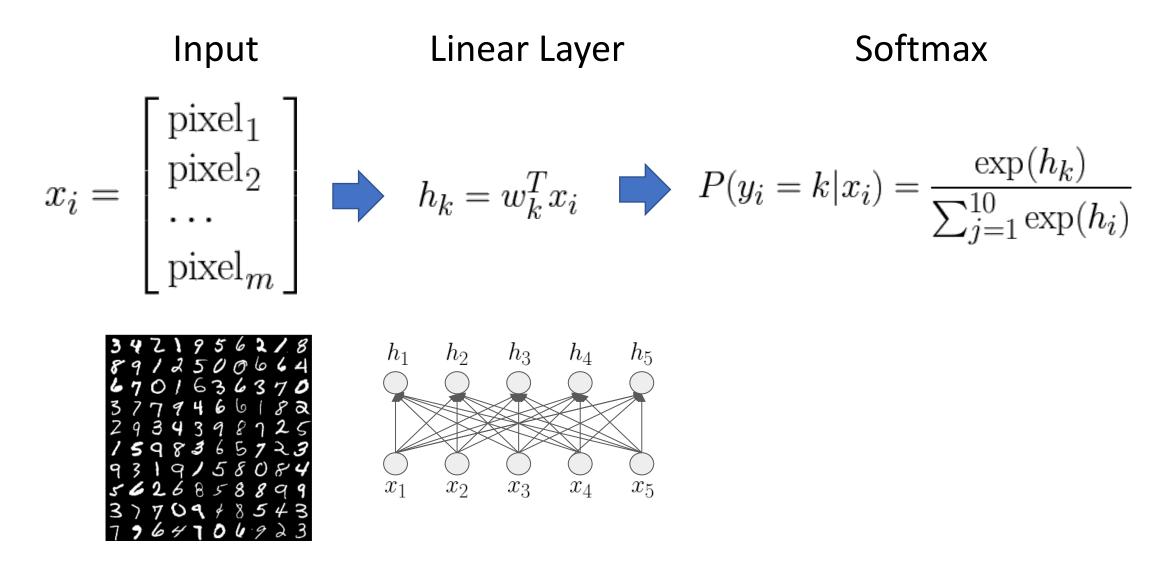
Accelerators and Hardware Backends

Quick Recap: Deep Learning



End to end training

Example: Logistic Regression



```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
  y \text{ grad} = y - \text{ batch } ys
  W grad = np.dot(batch xs.T, y grad)
   # update
   W = W - learning_rate * W_grad
```

Forward computation: Compute probability of each class y given input

- Matrix multiplication
 - o np.dot(batch_xs, W)
- Softmax transform the result
 - softmax(np.dot(batch_xs, W))

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
   y \text{ grad} = y - \text{ batch } ys
   W grad = np.dot(batch xs.T, y grad)
   # update
   W = W - learning_rate * W_grad
```

Manually calculate the gradient of weight with respect to the log-likelihood loss.

Exercise: Try to derive the gradient rule by yourself.

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
  y \text{ grad} = y - \text{ batch } ys
  W_grad = np.dot(batch_xs.T, y_grad)
   # update
   W = W - learning_rate * W_grad
```

imes Weight Update via SGD $w \leftarrow w - \eta \nabla_w L(w)$

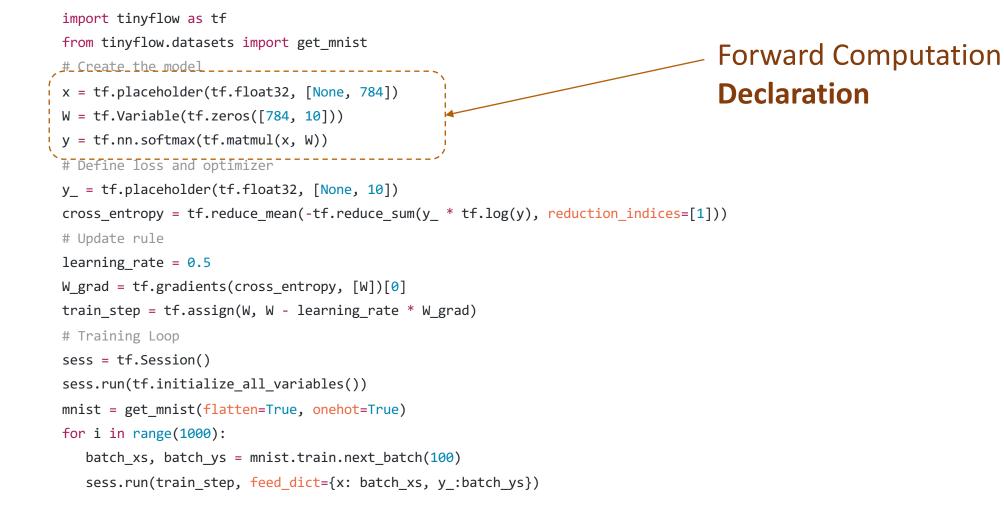
Discussion: Numpy based Program

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
  y \text{ grad} = y - \text{batch } ys
  W grad = np.dot(batch xs.T, y grad)
   # update
  W = W - learning_rate * W_grad
```

- What do we need to do to support deeper neural networks
- What are the complications

- Computation in Tensor Algebra
 - o softmax(np.dot(batch_xs, W))
- Manually calculate the gradient
 - \circ y_grad = y batch_ys
 - o W_grad = np.dot(batch_xs.T, y_grad)
- SGD Update Rule

Logistic Regression in TinyFlow (TF-1.x like API)



import tinyflow as tf from tinyflow.datasets import get mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) $learning_rate = 0.5$ W grad = tf.gradients(cross entropy, [W])[0] train step = tf.assign(W, W - learning rate * W grad) # Training Loop sess = tf.Session() sess.run(tf.initialize all variables()) mnist = get mnist(flatten=True, onehot=True) for i in range(1000): batch xs, batch ys = mnist.train.next batch(100) sess.run(train step, feed dict={x: batch xs, y :batch ys})

Loss function **Declaration**

$$P(\text{label} = k) = y_k$$
$$L(y) = \sum_{k=1}^{10} I(\text{label} = k) \log(y_i)$$

```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
                                                                                           Automatic Differentiation:
learning rate = 0.5
                                                                                           Next incoming topic
W_grad = tf.gradients(cross_entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

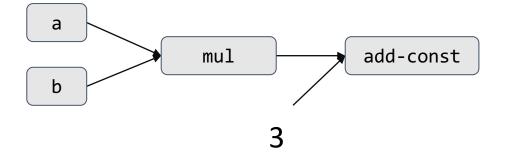
```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
                                                                                                 SGD update rule
train_step = tf.assign(W, W - learning_rate * W_grad)
"# Training Loop --
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
                                                                                               Real execution happens here!
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

The Declarative Language: Computation Graph

- Nodes represents the computation (operation)
- Edge represents the data dependency between operations

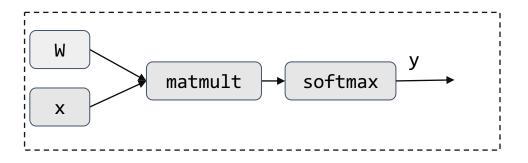
Computational Graph for a * b + 3



x = tf.placeholder(tf.float32, [None, 784])

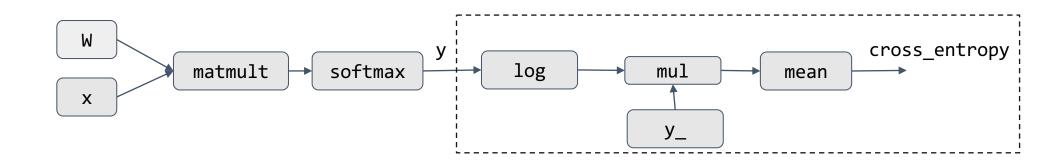
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))



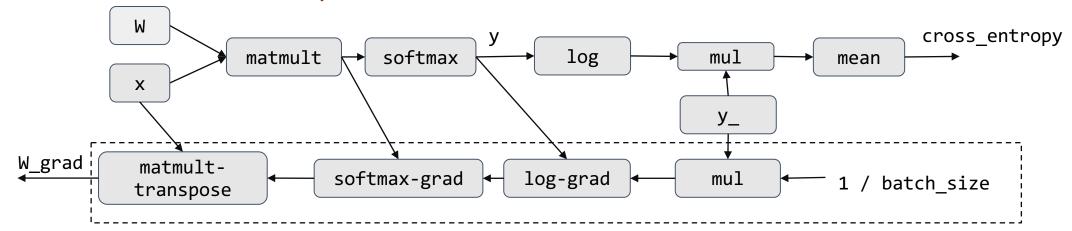
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

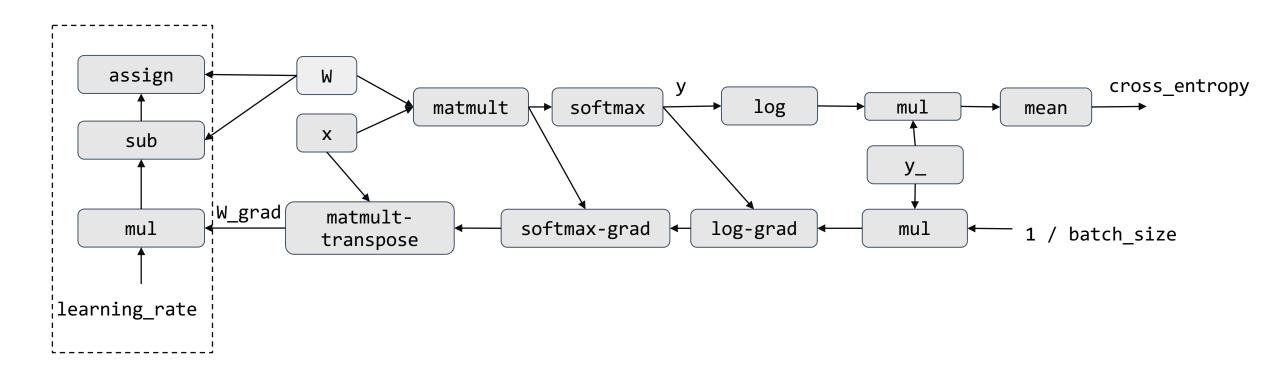


W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, more details in follow up lectures

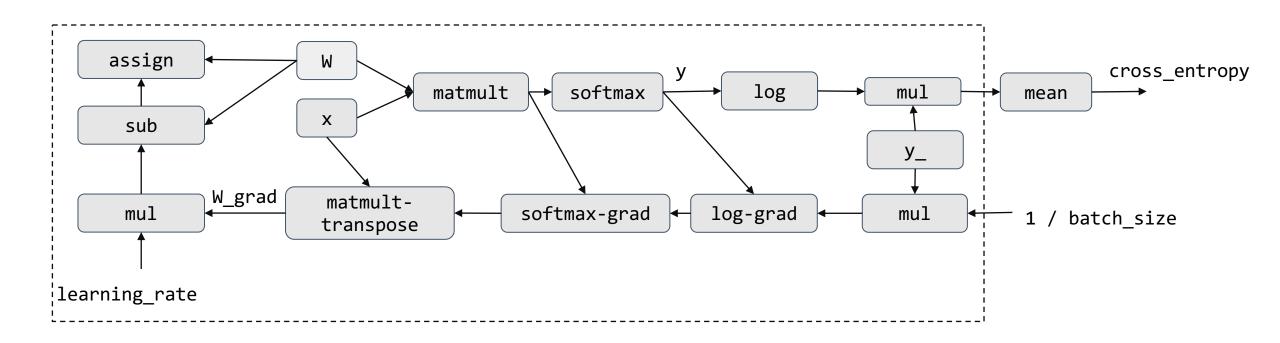


train_step = tf.assign(W, W - learning_rate * W_grad)



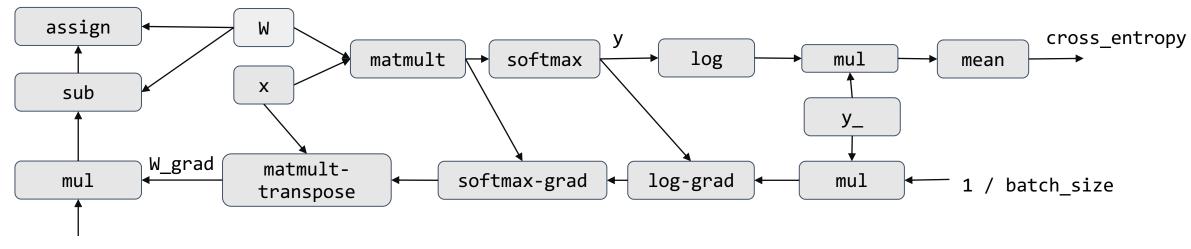
Execution only Touches the Needed Subgraph

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion: Computational Graph

- What is the benefit of computational graph?
- How can we deploy the model to mobile devices?



learning_rate

Imperative AutoGrad

```
import autograd.numpy as np
from autograd import grad
```

```
def softmax(x):
```

```
x = x - np.max(x, axis=1, keepdims=True)
x = np.exp(x)
x = x / np.sum(x, axis=1, keepdims=True)
return x
```

```
def loss(W, batch_xs, batch_ys):
    y = softmax(np.dot(batch_xs, W))
    return cross_entropy_loss(y, batch_ys)
```

W = W - learning rate * W grad

```
# get the mnist dataset
mnist = get_mnist(flatten=True, onehot=True)
learning_rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
W_grad = grad(loss, argnum=0)(W, batch_xs, batch_ys)
# update
```

Compute gradient via tracing through python executions

Discussion: Imperative vs Declarative Program

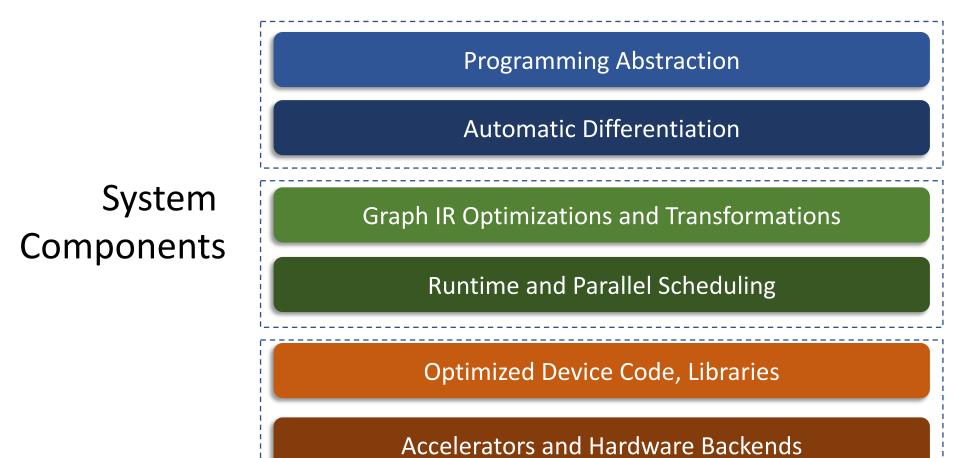
Benefit/drawback of the TF v1 model(declarative) vs Numpy(imperative) Model

```
import autograd.numpy as np
from autograd import grad
```

```
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
  return x
def loss(W, batch xs, batch ys):
  y = softmax(np.dot(batch xs, W))
  return cross entropy loss(y, batch ys)
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch xs, batch ys = mnist.train.next batch(100)
  W grad = grad(loss, argnum=0)(W, batch xs, batch ys)
  # update
  W = W - learning rate * W grad
```

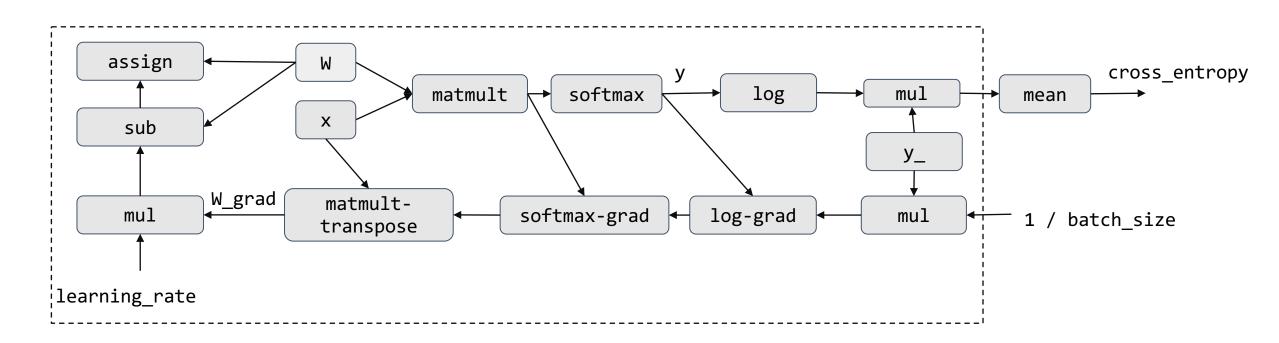
```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

A Typical Deep Learning System Stack



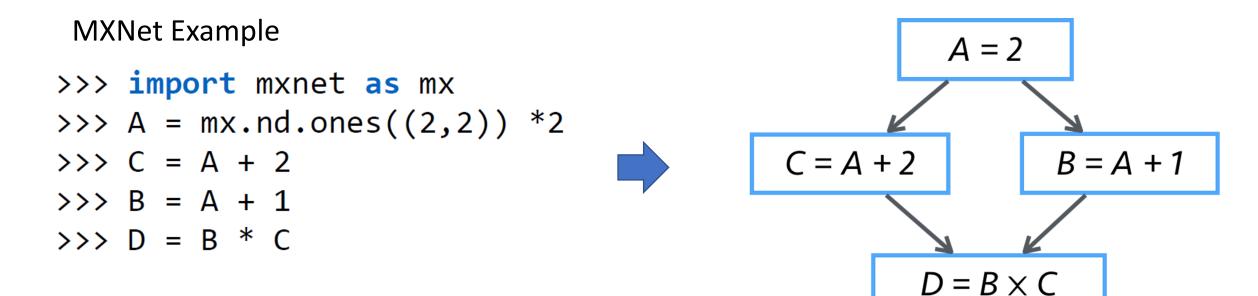
Computation Graph Optimization

- E.g. Deadcode elimination
- Memory planning and optimization
- What other possible optimization can we do given a computational graph?



Parallel Scheduling

- Code need to run parallel on multiple devices and worker threads
- Detect and schedule parallelizable patterns
- Detail lecture on later



A Typical Deep Learning System Stack

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Architecture

Optimized Device Code, Libraries

Accelerators and Hardware Backends

GPU Acceleration

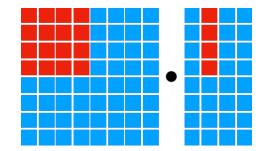
- Most existing deep learning programs runs on GPUs
- Modern GPU have Teraflops of computing power

T SFU
TSFU
T SFU
T SFU
T SFU
T SFU
T SFU
SFU
SFU
T SFU
IT SFU

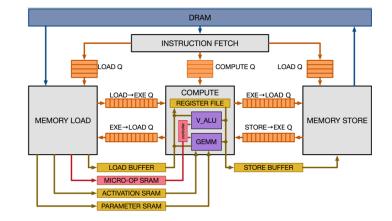
Specialized Accelerators



Tensor Compute Primitives



Explicitly Managed Memory Subsystem



A Typical Deep Learning System Stack

User API **Programming Abstraction** Automatic Differentiation System **Graph IR Optimizations and Transformations** Components **Runtime and Parallel Scheduling Optimized Device Code, Libraries** Architecture **Accelerators and Hardware Backends**

Not a comprehensive list of elements, the systems are still rapidly evolving :)

Differentiable Programming

Differentiable Programming language

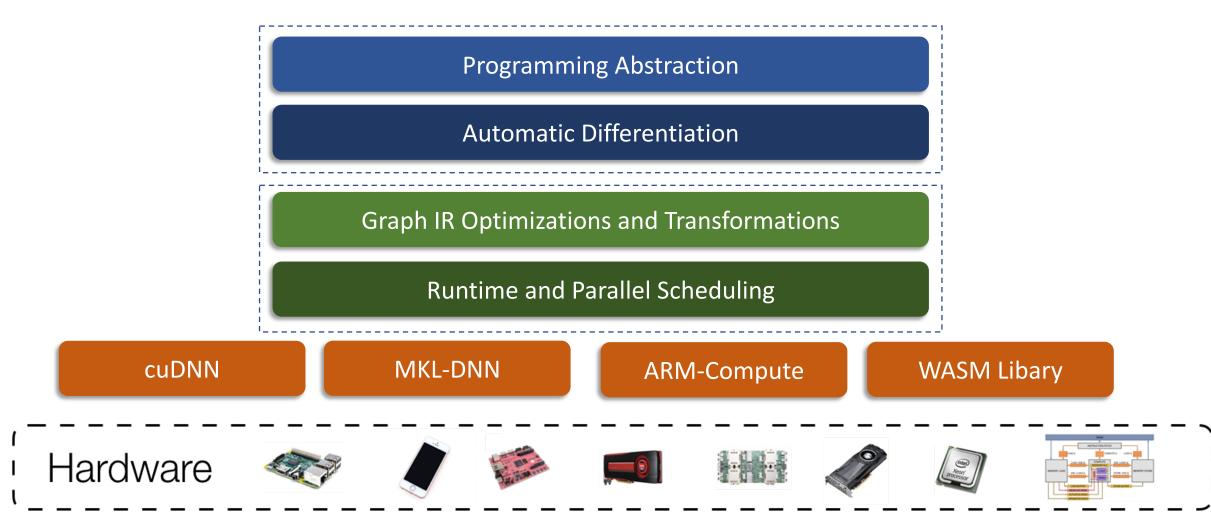
Compiler IR Optimizations and Transformations

Runtime and Parallel Scheduling

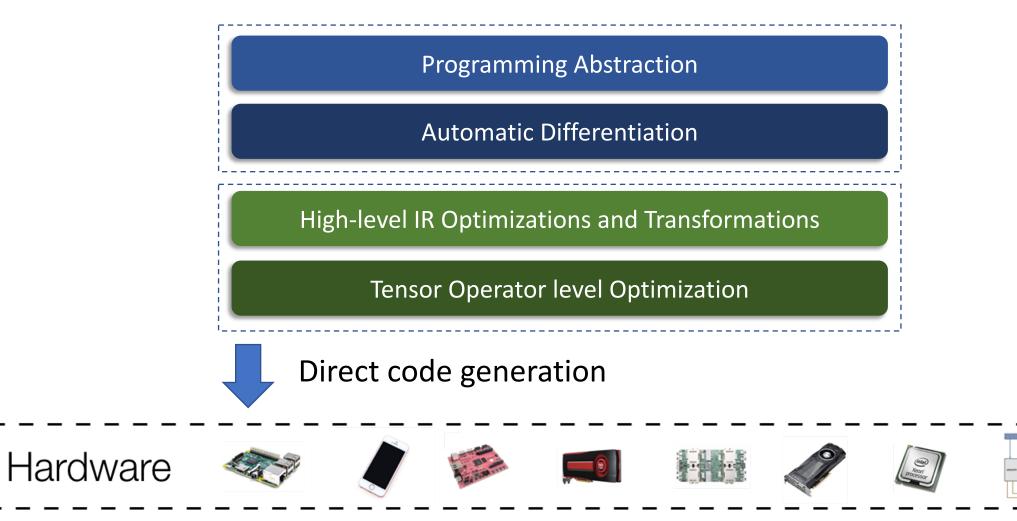
Optimized Device Code, Libraries

Accelerators and Hardware Backends

Each Hardware backend requires a software stack



Compiler Based Approach



Other ML Frameworks

This lecture focused on deep learning frameworks

dmlc **XGBoost**

- Common components
 - Distributed learning primitives (allreduce, parameter server)
 - Data loading and processing
 - Hyper parameter tuning
- Model specific optimizations
 - Approximate summary (for trees)

Logistics

- First discussion session next Tuesday about ML Frameworks!
- Submit paper reviews before Tuesday's lecture
- Presentation assignment will be out today.
- Start to think about project ideas and find teammates.

Questions

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends