
15-884: Machine Learning Systems

ML Frameworks and Abstractions

Instructor: Tianqi Chen



Class Information

• Website: https://catalyst.cs.cmu.edu/15-884-mlsys-sp21
• Bookmark this, contains links all resources(including ones below)

• Piazza: discussions and announcements

• Use Zoom for lectures, recordings are available via Canvas

• Gradscope: used for all assignments

https://catalyst.cs.cmu.edu/15-884-mlsys-sp21


Machine Learning Systems

Researcher

Data Compute

ML ResearchResNet

Transformer

….

Systems (ML Frameworks)

100 lines of python
System Abstractions

A few hours



Machine Learning Systems

We won’t focus on a specific one, but will 
discuss the common and useful elements of 
these systems



A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

User API

System 
Components

Architecture

We will dive into 
each part in 
follow up lectures



A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

ML ResearchResNet

Transformer

….



Quick Recap: Elements of Machine Learning

Model

Objective

Training
(Optimization)



Quick Recap: Deep Learning

Compositional
Model

layer1 layer2 predictor

End to end training

data



Ingredients of a Deep Learning

• Model and architecture

• Objective function and training techniques
• Which feedback should be used to guide the learning?
• Supervised, self-supervised, RL, adversarial learning

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data



Application affects System Design

Application

System Design

Data Management

Declarative language(SQL)
Execution planner
Storage engine

Data Processing

Distributed Primitive(MapReduce)
Fault tolerance layer
Workload migration 



Ingredients of a Deep Learning

• Model and architecture

• Objective function and training techniques
• Which feedback should be used to guide the learning?
• Supervised, self-supervised, RL, adversarial learning

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data
Discussion how can these 
ingredients affect the system 
design of ML frameworks 



A Typical Deep Learning System Stack

User API Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends



Quick Recap: Deep Learning

Compositional
Model

layer1 layer2 predictor

End to end training

data



Example: Logistic Regression
Input Linear Layer Softmax



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

x = x - np.max(x, axis=1, keepdims=True)

x = np.exp(x)

x = x / np.sum(x, axis=1, keepdims=True)

return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

# forward

y = softmax(np.dot(batch_xs, W))

# backward

y_grad = y - batch_ys

W_grad = np.dot(batch_xs.T, y_grad)

# update

W = W - learning_rate * W_grad

Logistic Regression in Numpy

Forward computation:
Compute probability of each class y given input

● Matrix multiplication

○ np.dot(batch_xs, W)

● Softmax transform the result

○ softmax(np.dot(batch_xs, W))



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

x = x - np.max(x, axis=1, keepdims=True)

x = np.exp(x)

x = x / np.sum(x, axis=1, keepdims=True)

return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

# forward

y = softmax(np.dot(batch_xs, W))

# backward

y_grad = y - batch_ys

W_grad = np.dot(batch_xs.T, y_grad)

# update

W = W - learning_rate * W_grad

Logistic Regression in Numpy

Manually calculate the gradient of weight 
with respect to the log-likelihood loss.

Exercise: Try to derive the gradient rule by 
yourself.



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

x = x - np.max(x, axis=1, keepdims=True)

x = np.exp(x)

x = x / np.sum(x, axis=1, keepdims=True)

return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

# forward

y = softmax(np.dot(batch_xs, W))

# backward

y_grad = y - batch_ys

W_grad = np.dot(batch_xs.T, y_grad)

# update

W = W - learning_rate * W_grad

Logistic Regression in Numpy

Weight Update via SGD



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

x = x - np.max(x, axis=1, keepdims=True)

x = np.exp(x)

x = x / np.sum(x, axis=1, keepdims=True)

return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

# forward

y = softmax(np.dot(batch_xs, W))

# backward

y_grad = y - batch_ys

W_grad = np.dot(batch_xs.T, y_grad)

# update

W = W - learning_rate * W_grad

Discussion: Numpy based Program

● What do we need to do to support 
deeper neural networks

● What are the complications 



Logistic Regression in Numpy

● Computation in Tensor Algebra  

○ softmax(np.dot(batch_xs, W))

● Manually calculate the gradient
○ y_grad = y - batch_ys

○ W_grad = np.dot(batch_xs.T, y_grad)

● SGD Update Rule

○ W = W - learning_rate * W_grad



import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Logistic Regression in TinyFlow (TF-1.x like API)

Forward Computation 
Declaration



import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Logistic Regression in TinyFlow

Loss function Declaration



import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Logistic Regression in TinyFlow

Automatic Differentiation: 
Next incoming topic



Logistic Regression in TinyFlow
import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

SGD update rule



Logistic Regression in TinyFlow
import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Real execution happens here!



The Declarative Language: Computation Graph

a

b
mul add-const

3

● Nodes represents the computation (operation)
● Edge represents the data dependency between operations

Computational Graph for a * b +3 



Computational Graph Construction by Step

W

x
matmult softmax

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

y



Computational Graph Construction by Step

W

x
matmult softmax log

y_

mul mean
y cross_entropy

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))



Computational Graph Construction by Step

W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

y cross_entropy

W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, more details in follow 
up lectures 



Computational Graph Construction by Step

W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

train_step = tf.assign(W, W - learning_rate * W_grad)



Execution only Touches the Needed Subgraph

W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion: Computational Graph

W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

● What is the benefit of computational graph?
● How can we deploy the model to mobile devices?



Imperative AutoGrad
import autograd.numpy as np

from autograd import grad

def softmax(x):

x = x - np.max(x, axis=1, keepdims=True)

x = np.exp(x)

x = x / np.sum(x, axis=1, keepdims=True)

return x

def loss(W, batch_xs, batch_ys):

y = softmax(np.dot(batch_xs, W))

return cross_entropy_loss(y, batch_ys)

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

W_grad = grad(loss, argnum=0)(W, batch_xs, batch_ys)

# update

W = W - learning_rate * W_grad

Compute gradient via tracing 
through python executions



Discussion: Imperative vs Declarative Program

import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Benefit/drawback of the TF v1 model(declarative) vs Numpy(imperative) Model
import autograd.numpy as np

from autograd import grad

def softmax(x):

x = x - np.max(x, axis=1, keepdims=True)

x = np.exp(x)

x = x / np.sum(x, axis=1, keepdims=True)

return x

def loss(W, batch_xs, batch_ys):

y = softmax(np.dot(batch_xs, W))

return cross_entropy_loss(y, batch_ys)

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

W_grad = grad(loss, argnum=0)(W, batch_xs, batch_ys)

# update

W = W - learning_rate * W_grad



A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

System 
Components



Computation Graph Optimization

● E.g. Deadcode elimination
● Memory planning and optimization 
● What other possible optimization can we do given a computational graph?

W

x
matmult softmax log

y_

mul

log-gradsoftmax-grad mulmatmult-
transpose

W_grad
mul

learning_rate

sub

assign y
mean

1 / batch_size

cross_entropy



Parallel Scheduling 
● Code need to run parallel on multiple devices and worker threads
● Detect and schedule parallelizable patterns
● Detail lecture on later

MXNet Example



A Typical Deep Learning System Stack

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

Architecture



GPU Acceleration 

● Most existing deep learning programs 
runs on GPUs

● Modern GPU have Teraflops of 
computing power



Specialized Accelerators

Tensor 
Compute Primitives

Explicitly Managed
Memory Subsystem



A Typical Deep Learning System Stack
Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

User API

System 
Components

Architecture

Not a comprehensive list of elements, 
the systems are still rapidly evolving :)



Differentiable Programming

Compiler IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends

Differentiable Programming language



Each Hardware backend requires a software stack
Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

cuDNN MKL-DNN ARM-Compute WASM Libary



Compiler Based Approach
Programming Abstraction

Automatic Differentiation

High-level IR Optimizations and Transformations

Tensor Operator level Optimization

Direct code generation



Other ML Frameworks

This lecture focused on deep learning frameworks

● Common components
● Distributed learning primitives (allreduce, 

parameter server)
● Data loading and processing
● Hyper parameter tuning

● Model specific optimizations
● Approximate summary (for trees)



Logistics

• First discussion session next Tuesday about ML Frameworks!

• Submit paper reviews before Tuesday’s lecture

• Presentation assignment will be out today.

• Start to think about project ideas and find teammates.



Questions 

Programming Abstraction

Automatic Differentiation

Graph IR Optimizations and Transformations

Runtime and Parallel Scheduling

Optimized Device Code, Libraries

Accelerators and Hardware Backends


